• Title/Summary/Keyword: CMOS Process

Search Result 1,650, Processing Time 0.028 seconds

An Analytical Model of Maximum Simultaneous Switching Noise for Ground Interconnection Networks in CMOS Systems (CMOS 그라운드 연결망에서의 최대 동시 스위칭 잡음의 해석 모형)

  • Kim, Jung-Hak;Baek, Jong-Humn;Kim, Seok-Yoon
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.50 no.3
    • /
    • pp.115-119
    • /
    • 2001
  • This paper presents an efficient and simple method for analyzine maximum simultaneous switching noise (SSN) on ground interconnection networks in CMOS systems. For the derivation of maximum SSN expression, we use ${\alpha}$-power law MOS model and Taylor's series approximation. The accuracy of the proposed method is verified by comparing the results with those of previous researches and HSPICE simulations under the contemporary process parameters and environmental conditions. The proposed method predicts the maximum SSN values more accurately when compared to existing approaches even in most practical cases such that exist some output drivers not in transition.

  • PDF

Characteristics of the 2-D SSIMT using a CMOS Process (CMOS 공정을 이용한 2차원 SSIMT의 특성)

  • Song, Youn-Gui;Ryu, Ji-Goo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.8
    • /
    • pp.697-700
    • /
    • 2007
  • A novel 2-Dimensional Suppressed Sidewall Injection Magnetotransistor (SSIMT) with high linearity has been fabricated on the standard CMOS technology and experimentally verified. The novel 2-Dimensional SSIMT overcomes the restriction of the standard CMOS technology. Experimental results of the fabricated 2-Dimensional SSIMT show that the variation of each collector output currents are extremely linear as a function of magnetic field from -200mT to 200mT at $I_B = 1 mA,\;V_{CE} = 5 V\;and\;V_{SE} = 5 V$. The relative sensitivity shows up to 13 %/T. The measured nonlinearity of the fabricated device is about 0.9%.

Design of a Built-In Current Sensor for CMOS IC Testing (CMOS 집적회로의 테스팅을 위한 새로운 내장형 전류감지 회로의 설계)

  • Hong, Seung-Ho;Kim, Jeong-Beom
    • Proceedings of the KIEE Conference
    • /
    • 2003.11b
    • /
    • pp.271-274
    • /
    • 2003
  • This paper presents a Built-in Current Sensor that detect defects in CMOS integrated circuits using the current testing technique. This scheme employs a cross-coupled connected PMOS transistors, it is used as a current comparator. Our proposed scheme is a negligible impart on the performance of the circuit undo. test (CUT). In addition, in the normal mode of the CUT not dissipation extra power, high speed detection time and applicable deep submicron process. The validity and effectiveness are verified through the HSPICE simulation on circuits with defects. The entire area of the test chip is $116{\times}65{\mu}m^2$. The BICS occupies only $41{\times}17{\mu}m^2$ of area in the test chip. The area overhead of a BICS versus the entire chip is about 9.2%. The chip was fabricated with Hynix $0.35{\mu}m$ 2-poly 4-metal N-well CMOS technology.

  • PDF

CMOS Temperature Sensor with Ring Oscillator for Mobile DRAM Self-refresh Control (링 오실레이터를 가진 CMOS 온도 센서)

  • Kim, Chan-kyung;Lee, Jae-Goo;Kong, Bai-Sun;Jun, Young-Hyun
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.485-486
    • /
    • 2006
  • This paper proposes a novel low-cost CMOS temperature sensor for controlling the self-refresh period of a mobile DRAM. In this temperature sensor, ring oscillators composed of cascaded inverter stages are used to obtain the temperature of the chip. This method is highly area-efficient, simple and easy for IC implementation as compared to traditional temperature sensors based on analog bandgap reference circuits. The proposed CMOS temperature sensor was fabricated with 80 nm 3-metal DRAM process. It occupies a silicon area of only about less than $0.02\;mm^2$ at $10^{\circ}C$ resolution with under 5uW power consumption at 1 sample/s processing rate. This area is about 33% of conventional temperature sensor in mobile DRAM.

  • PDF

Optical Failure Analysis Technique in Deep Submicron CMOS Integrated Circuits

  • Kim, Sunk-Won;Lee, Hyong-Min;Lee, Hyun-Joong;Woo, Jong-Kwan;Cheon, Jun-Ho;Kim, Hwan-Yong;Park, Young-June;Kim, Su-Hwan
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.11 no.4
    • /
    • pp.302-308
    • /
    • 2011
  • In this paper, we have proposed a new approach for optical failure analysis which employs a CMOS photon-emitting circuitry, consisting of a flip-flop based on a sense amplifier and a photon-emitting device. This method can be used even with deep-submicron processes where conventional optical failure analyses are difficult to use due to the low sensitivity in the near infrared (NIR) region of the spectrum. The effectiveness of our approach has been proved by the failure analysis of a prototype designed and fabricated in 0.18 ${\mu}m$ CMOS process.

Small-Signal Analysis of a Differential Two-Stage Folded-Cascode CMOS Op Amp

  • Yu, Sang Dae
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.6
    • /
    • pp.768-776
    • /
    • 2014
  • Using a simplified high-frequency small-signal equivalent circuit model for BSIM3 MOSFET, the fully differential two-stage folded-cascode CMOS operational amplifier is analyzed to obtain its small-signal voltage transfer function. As a result, the expressions for dc gain, five zero frequencies, five pole frequencies, unity-gain frequency, and phase margin are derived for op amp design using design equations. Then the analysis result is verified through the comparison with Spice simulations of both a high speed op amp and a low power op amp designed for the $0.13{\mu}m$ CMOS process.

Broadband CMOS Single-ended to Differential Converter for DVB-S2 Receiver Tuner IC (DVB-S2 수신기 튜너용 IC의 광대역 CMOS 단일신호-차동신호 변환기)

  • Shin, Hwa-Hyeong;Kim, Nam-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.185-185
    • /
    • 2008
  • This paper describes the broadband SDC (Single-ended to Differential Converter) for Digital Video Broadcasting-Satellite $2^{nd}$ edition (DVB-S2) receiver tuner IC. It is fabricated by using $0.18{\mu}m$ CMOS process. In order to obtain high linearity and low phase mismatch, the broadband SDC (Single-ended to Differential Converter) is designed with current mirror structure and cross-coupled capacitor and current source binding differential structure at VDD. The simulation result of SDC shows IIP3 of 11.9 dBm and IIP2 of 38 dBm. It consumes 5mA current with 2.7V supply voltage.

  • PDF

An Ultra-Low Power Expandable 4-bit ALU IC using Adiabatic Dynamic CMOS Logic Circuit Technology

  • Kazukiyo Takahashi;Hashimoto, Shin-ichi;Mitsuru Mizunuma
    • Proceedings of the IEEK Conference
    • /
    • 2000.07b
    • /
    • pp.937-940
    • /
    • 2000
  • This paper describes expandable 4 bit ALU IC using adiabatic and dynamic CMOS circuit technique. It was designed so that the integrated circuit may have the function which is equivalent to HC181 which is CMOS standard logic IC for the comparison, and it was fabricated using a standard 1.2${\mu}$ CMOS process. As the result, the IC has shown that it operates perfectly on all function modes. The power dissipation is 2 order lower than that of HC 181.

  • PDF

Design of an 8 bit CMOS low power and high-speed current-mode folding and interpolation A/D converter (8비트 저전력 고속 전류구동 폴딩.인터폴레이션 CMOS A/D 변환기 설계)

  • 김경민;윤황섭
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.34C no.6
    • /
    • pp.58-70
    • /
    • 1997
  • In this paper, an 8bit CMOS low power, high-speed current-mode folding and interpolation A/D converter is designed with te LG semicon $0.8\mu\textrm{m}$ N-well single-poly/double-metal CMOS process to be integrated into a portable image signal processing system such as a digital camcoder. For good linearity and low power consumption, folding amplifiers and for high speed performance of the A/D converter, analog circuitries including folding block, current-mode interpolation circuit and current comparator are designed as a differential-mode. The fabricated 8 bit A/D converter occupies the active chip area of TEX>$2.2mm \times 1.6mm$ and shows DNL of $\pm0.2LSB$, INL of <$\pm0.5LSB$, conversion rate of 40M samples/s, and the measured maximum power dissipation of 33.6mW at single +5V supply voltage.

  • PDF

A low-power multiplying D/A converter design for 10-bit CMOS algorithmic A/D converters (10비트 CMOS algorithmic A/D 변환기를 위한 저전력 MDAC 회로설계)

  • 이제엽;이승훈
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.34C no.12
    • /
    • pp.20-27
    • /
    • 1997
  • In this paper, a multiplying digital-to-analog converter (MDAC) circuit for low-power high-resolution CMOS algorithmic A/D converters (ADC's) is proposed. The proposed MDAC is designed to operte properly at a supply at a supply voltge between 3 V and 5 V and employs an analog0domain power reduction technique based on a bias switching circuit so that the total power consumption can be optimized. As metal-to-metal capacitors are implemented as frequency compensation capacitors, opamps' performance can be varied by imperfect process control. The MDAC minimizes the effects by the circuit performance variations with on-chip tuning circuits. The proposed low-power MDAC is implementd as a sub-block of a 10-bit 200kHz algorithmic ADC using a 0.6 um single-poly double-metal n-well CMOS technology. With the power-reduction technique enabled, the power consumption of the experimental ADC is reduced from 11mW to 7mW at a 3.3V supply voltage and the power reduction ratio of 36% is achieved.

  • PDF