• Title/Summary/Keyword: Breakdown field

Search Result 794, Processing Time 0.03 seconds

Copper Particle Effect on the Breakdown Strength of Insulating Oil at Combined AC and DC Voltage

  • Wang, You-Yuan;Li, Yuan-Long;Wei, Chao;Zhang, Jing;Li, Xi
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.865-873
    • /
    • 2017
  • Converter transformer is the key equipment of high voltage direct current transmission system. The solid suspending particles originating from the process of installation and operation of converter transformer have significant influence on the insulation performance of transformer oil, especially in presence of DC component in applied voltage. Under high electric field, the particles easily lead to partial discharge and breakdown of insulating oil. This paper investigated copper particle effect on the breakdown voltage of transformer oil at combined AC and DC voltage. A simulation model with single copper particle was established to interpret the particle effect on the breakdown strength of insulating oil. The experimental and simulation results showed that the particles distort the electric field. The breakdown voltage of insulating oil contaminated with copper particle decreases with the increase of particle number, and the breakdown voltage and the logarithm of particle number approximately satisfy the linear relationship. With the increase of the DC component in applied voltage, the breakdown voltage of contaminated insulating oil decreases. The simulation results show that the particle collides with the electrode more frequently with more DC component contained in the applied voltage, which will trigger more discharge and decrease the breakdown voltage of insulating oil.

Analysis of Insulating Reliability in Epoxy Composites using Weibull Distribution Equation (와이블 분포식을 이용한 에폭시 복합체의 절연 신뢰도 분석)

  • Park, No-Bong;Lim, Jung-Kwan;Park, Yong-Pil
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2003.05a
    • /
    • pp.813-816
    • /
    • 2003
  • The dielectric breakdown of epoxy composites used for transformers was experimented and then its data were applied to Weibull distribution probability. First of all, speaking of dielectric breakdown properties, the more hardener increased, the stronger breakdown strength became at low temperature because of cross-linked density by the virtue of ester radical. The breakdown strength of specimens with filler was lower than it of non-filler specimens because it is believed that the adding filler forms interface and charge is accumulated in it, therefore the molecular motility is raised and the electric field is concentrated. In the case of filled specimens with treating silane, the breakdown strength become much higher. Finally, according to Weibull distribution analysis, reducing breakdown probability of equipment insulation lower than 0.1 % level requires the allowable field intensity values to be kept under 21.5 MV/cm.

  • PDF

Design and fabrication for high breakdown voltage on 1000V bipolar junction transistor (1000V 급 바이폴라 접합 트랜지스터에 대한 고내압화의 설계 및 제작)

  • 허창수;추은상;박종문;김상철
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.44 no.4
    • /
    • pp.490-495
    • /
    • 1995
  • A bipolar junction transistor which exihibits 1000V breakdown voltage is designed and fabricated using FLR (Field Limiting Rings). Three dimensional effects on the breakdown voltage is investigated in the cylindrical coordinate and the simulation results are compared with the results in the rectangular coordinate. Breakdown voltage of the device with 3 FLR is simulated to be 1420V in the cylindrical coordinate while it is 1580V in rectangular coordinate. Bipolar junction transistor has been fabricated using the epitaxial wafer of which resistivity is 86 .OMEGA.cm and thickness is 105 .mu.m. Si$_{3}$N$_{4}$ and glass are employed for the passivation. Breakdown of the fabricated device is measured to be 1442V which shows better greement with the simulation results in cylindrical coordination.

  • PDF

The Junction Termination Design Employing Shallow Trench and Field Limiting Ring for 1200 V-Class Devices (얕은 트렌치와 전계 제한 확산 링을 이용한 접합 마감 설계의 1200 V급 소자에 적용)

  • 하민우;오재근;최연익;한민구
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.53 no.6
    • /
    • pp.300-304
    • /
    • 2004
  • We have proposed the junction termination design employing shallow trench filled with silicon dioxide and field limiting ring (FLR). We have designed trenches between P+ FLRs to decrease the junction termination radius without sacrificing the breakdown voltage characteristics. We have successfully fabricated and measured improved breakdown voltage characteristics of the Proposed device for 1200 V-class applications. The junction termination radius of the proposed device has decreased by 15%-21% compared with that of the conventional FLR at the identical breakdown voltage. The junction termination area of the proposed device has decreased by 37.5% compared with that of the conventional FLR. The breakdown voltage of the proposed device employing 7 trenches was 1156 V, which was 80% of the ideal parallel-plane .junction breakdown voltage.

Breakdown Characteristics of Ar/$N_2$ and Kr/$N_2$ Gas Mixtures with Pressure Variation (압력변화에 따른 Ar/$N_2$및 Kr/$N_2$ 혼합가스의 절연파괴 특성)

  • 이상우;이동인;이광식;김인식;김이국;배영호
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.187-191
    • /
    • 2001
  • In this paper, the ac breakdown characteristics of Ar/$N_2$and Kr/$N_2$gas mixtures with gas pressure range of 58.8~137.3[kPa] under uniform and non-uniform fields were investigated. Summarizing the experimental results, the breakdown voltages of Ar/$N_2$ gas mixtures were decreased with decreasing the mixture ratio of pure $N_2$gas. In case of Ar(85%)/$N_2$(15%) and Ar(70%)/$N_2$(30%) gas mixtures comparing to the pure Ar gas, the breakdown voltages under uniform field were increased about 1.8 and 2.2 times, and under non-uniform field were increased about 1.1 and 1.3 times at the pressure of 101.3[kPa]. Also, in case of Kr(85%)/$N_2$(15%) and Kr(70%)/$N_2$(30%) gas mixtures comparing to the pure Kr gas, the breakdown voltages under uniform field were increased about 1.7 and 2.0 times, and under non-uniform field were increased about 1.0 and 1.2 times.

  • PDF

Two-dimensional Simulation Study on Optimization of Gate Field Plate Structure for High Breakdown Voltage AlGaN/GaN-on-Si High Electron Mobility Transistors (고내압 전력 스위칭용 AlGaN/GaN-on-Si HEMT의 게이트 전계판 구조 최적화에 대한 이차원 시뮬레이션 연구)

  • Lee, Ho-Jung;Cho, Chun-Hyung;Cha, Ho-Young
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.48 no.12
    • /
    • pp.8-14
    • /
    • 2011
  • The optimal geometry of the gate field plate in AlGaN/GaN-on-Si HEMT has been proposed using two-dimensional device simulation to achieve a high breakdown voltage for a given gate-to-drain distance. It was found that the breakdown voltage was drastically enhanced due to the reduced electric field at the gate corner when a gate field plate was employed. The electric field distribution at the gate corner and the field plate edge was investigated as functions of field plate length and insulator thickness. According to the simulation results, the electric field at the gate corner can be successfully reduced even with the field plate length of 1 ${\mu}m$. On the other hand, when the field plate length is too long, the distance between field plate and drain electrode is reduced below a critical level, which eventually lowers the breakdown voltage. The highest breakdown voltage was achieved with the field plate length of 1 ${\mu}m$. According to the simulation results varying the $SiN_x$ film thickness for the fixed field plate length of 1 ${\mu}m$, the optimum thickness range of the $SiN_x$ film was 200 - 300 nm where the electric field strength at the field plate edge counterbalances that of the gate corner.

Breakdown Voltage Characteristics of LDMOST with External Field Ring (외부 전계 링을 갖는 LDMOST의 항복전압 특성)

  • Oh Dong-joo;Yeom Kee-soo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.8
    • /
    • pp.1719-1724
    • /
    • 2004
  • In this paper, we have proposed a new structure of LDMOST, which has been expected as a next generation RF power device, to improve the BV(Breakdown Voltage) characteristics. The proposed structure, named external field ring, is formed around a drift region by the three dimensional structure. The external field ring relieves the electric field in the drift region and improves the BV characteristics. By the three dimensional TCAD simulations, it was found that the BV of LDMOST was increased by the increase of the junction depth and doping concentration of the external field ring. Therefore, the BV characteristics of the LDMOST can be remarkably improved by addition of external field ring using an existing p+ sinker process.

The Effect of Fixed Oxide Charge on Breakdown Voltage of p+/n Junction in the Power Semiconductor Devices (전력용 반도체 소자의 설계 제작에 있어서 Fixed oxide charge가 p+/n 접합의 항복전압에 미치는 영향)

  • Yi, C.W.;Sung, M.Y.;Choi, Y.I.;Kim, C.K.;Suh, K.D.
    • Proceedings of the KIEE Conference
    • /
    • 1988.11a
    • /
    • pp.155-158
    • /
    • 1988
  • The fabrication of devices using plans technology could lend to n serious degradation in the breakdown voltage as a result of high electric field at the edges. An elegant approach to reducing the electric field at the edge is by using field limiting ring. The presence of surface charge has n strong influrence on the depletion layer spreading at the surface region because this charge complements the charge due to the ionized acceptors inside the depletion layer. Surface charge of either polarity can lower the breakdown voltage because it affects the distribution of electric field st the edges. In this paper we discuss the influrences of fixed oxide charge on the breakdown voltage of the p+/n junction with field limiting ring(or without field limiting ring).

  • PDF

The Fabrication of Super Junction IGBT with 3,000 V Class Super Junction Field Rings (3,000 V급 초접합 필드링을 갖는 초접합 IGBT 제작에 관한 연구)

  • Kang, Ey Goo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.9
    • /
    • pp.551-554
    • /
    • 2015
  • This paper was analyzed electrical characteristics of super junction IGBT with super junction field rings. As a result of super junction IGBT with super junction field rings, we obtained 3,300 V breakdown voltage and good thermal characteristics. we obtained shrinked chip size because field ring was decreased than field ring for conventional IGBT, too. And we fabricated super junction IGBT with super junction field rings. As a result of measuring fabricated chip, we obtained 3,300 V breakdown voltage. The fabricated devices were replaced thyristos using high voltage conversion, sufficiently.

Asymmetric 및 Symmetric MOSFET 소자의 Drain Breakdown 특성 분석

  • Choe, Pyeong-Ho;Kim, Sang-Seop;Choe, Byeong-Deok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.232.2-232.2
    • /
    • 2013
  • 본 연구에서는 asymmetric과 symmetric MOSFET 소자의 drain breakdown 및 snapback 특성을 분석하였다. 실험에서는 두 MOSFET 소자의 동작 영역에서 게이트와 드레인에 각각 전압을 인가하였다. 드레인 전류-전압 곡선으로 부터 drain breakdown 전압과 snapback 전압을 추출하였다. 결과 avalanche breakdown 발생 전의 드레인 전류는 asymmetric 구조의 경우 더 작은 값을 보였으며 이는 asymmetric 구조에서의 drain field 가 더 낮기 때문이다. 따라서 impact ionization은 asymmetric 구조에서 덜 발생하며, snapback 전압은 avalanche breakdown voltage가 작은 asymmetric 구조에서 크게 나타났다.

  • PDF