• Title/Summary/Keyword: Boundary-crossing

Search Result 82, Processing Time 0.026 seconds

BOUNDARY VALUE PROBLEM FOR ONE-DIMENSIONAL ELLIPTIC JUMPING PROBLEM WITH CROSSING n-EIGENVALUES

  • JUNG, TACKSUN;CHOI, Q-HEUNG
    • East Asian mathematical journal
    • /
    • v.35 no.1
    • /
    • pp.41-50
    • /
    • 2019
  • This paper is dealt with one-dimensional elliptic jumping problem with nonlinearities crossing n eigenvalues. We get one theorem which shows multiplicity results for solutions of one-dimensional elliptic boundary value problem with jumping nonlinearities. This theorem is that there exist at least two solutions when nonlinearities crossing odd eigenvalues, at least three solutions when nonlinearities crossing even eigenvalues, exactly one solutions and no solution depending on the source term. We obtain these results by the eigenvalues and the corresponding normalized eigenfunctions of the elliptic eigenvalue problem and Leray-Schauder degree theory.

A Novel Predictive Digital Controlled Sensorless PFC Converter under the Boundary Conduction Mode

  • Wang, Jizhe;Maruta, Hidenori;Matsunaga, Motoshi;Kurokawa, Fujio
    • Journal of Power Electronics
    • /
    • v.17 no.1
    • /
    • pp.1-10
    • /
    • 2017
  • This paper presents a novel predictive digital control method for boundary conduction mode PFC converters without the need for detecting the inductor current. In the proposed method, the inductor current is predicted by analytical equations instead of being detected by a sensing-resistor. The predicted zero-crossing point of the inductor current is determined by the values of the input voltage, output voltage and predicted inductor current. Importantly, the prediction of zero-crossing point is achieved in just a single switching cycle. Therefore, the errors in predictive calculation caused by parameter variations can be compensated. The prediction of the zero-crossing point with the proposed method has been shown to have good accuracy. The proposed method also shows high stability towards variations in both the inductance and output power. Experimental results demonstrate the effectiveness of the proposed predictive digital control method for PFC converters.

SOLVABILITY FOR THE PARABOLIC PROBLEM WITH JUMPING NONLINEARITY CROSSING NO EIGENVALUES

  • Jung, Tacksun;Choi, Q-Heung
    • Korean Journal of Mathematics
    • /
    • v.16 no.4
    • /
    • pp.545-551
    • /
    • 2008
  • We investigate the multiple solutions for a parabolic boundary value problem with jumping nonlinearity crossing no eigenvalues. We show the existence of the unique solution of the parabolic problem with Dirichlet boundary condition and periodic condition when jumping nonlinearity does not cross eigenvalues of the Laplace operator $-{\Delta}$. We prove this result by investigating the Lipschitz constant of the inverse compact operator of $D_t-{\Delta}$ and applying the contraction mapping principle.

  • PDF

Lower Bounds on Boundary Slope Diameters for Montesinos Knots

  • Ichihara, Kazuhiro;Mizushima, Shigeru
    • Kyungpook Mathematical Journal
    • /
    • v.49 no.2
    • /
    • pp.321-348
    • /
    • 2009
  • In this paper, we give two lower bounds on the diameter of the boundary slope set of a Montesinos knot. One is described in terms of the minimal crossing numbers of the knots, and the other is related to the Euler characteristics of essential surfaces with the maximal/minimal boundary slopes.

MULTIPLE SOLUTIONS FOR THE NONLINEAR PARABOLIC PROBLEM

  • Jung, Tacksun;Choi, Q-Heung
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.22 no.2
    • /
    • pp.251-259
    • /
    • 2009
  • We investigate the multiple solutions for the nonlinear parabolic boundary value problem with jumping nonlinearity crossing two eigenvalues. We show the existence of at least four nontrivial periodic solutions for the parabolic boundary value problem. We restrict ourselves to the real Hilbert space and obtain this result by the geometry of the mapping.

  • PDF

GEOMETRIC RESULT FOR THE ELLIPTIC PROBLEM WITH NONLINEARITY CROSSING THREE EIGENVALUES

  • Jung, Tacksun;Choi, Q-Heung
    • Korean Journal of Mathematics
    • /
    • v.20 no.4
    • /
    • pp.507-515
    • /
    • 2012
  • We investigate the number of the solutions for the elliptic boundary value problem. We obtain a theorem which shows the existence of six weak solutions for the elliptic problem with jumping nonlinearity crossing three eigenvalues. We get this result by using the geometric mapping defined on the finite dimensional subspace. We use the contraction mapping principle to reduce the problem on the infinite dimensional space to that on the finite dimensional subspace. We construct a three dimensional subspace with three axis spanned by three eigenvalues and a mapping from the finite dimensional subspace to the one dimensional subspace.

COMPUTATIONS ON FLOW FIELDS AROUND A 3D FLAPPING PLATE USING THE HYBRID CARTESIAN/IMMERSED BOUNDARY METHOD (HCIB 법을 이용한 변형하는 평판 주위의 3차원 유동해석)

  • Shin, Sang-Mook
    • Journal of computational fluids engineering
    • /
    • v.12 no.1
    • /
    • pp.1-8
    • /
    • 2007
  • A code is developed using the hybrid Cartesian/immersed boundary method and it is applied to simulate flows around a three-dimensional deforming body. A new criterion is suggested to distribute the immersed boundary nodes based on edges crossing a body boundary. Velocities are reconstructed at the immersed boundary nodes using the interpolation along a local normal line to the boundary. Reconstruction of the pressure at the immersed boundary node is avoided using the hybrid staggered/non-staggered grid method. The developed code is validated through comparisons with other experimental and numerical results for the velocity profiles around a circular cylinder under the forced in-line oscillation and the pressure coefficient distribution on a sphere. The code is applied to simulate the flow fields around a plate whose tail is periodically flapping under a translation. The effects of the velocity and acceleration due to the deformation on the periodic shedding of pairs of tip vortices are investigated.

SIX SOLUTIONS FOR THE SEMILINEAR WAVE EQUATION WITH NONLINEARITY CROSSING THREE EIGENVALUES

  • Choi, Q-Heung;Jung, Tacksun
    • Korean Journal of Mathematics
    • /
    • v.20 no.3
    • /
    • pp.361-369
    • /
    • 2012
  • We get a theorem which shows the existence of at least six solutions for the semilinear wave equation with nonlinearity crossing three eigenvalues. We obtain this result by the variational reduction method and the geometric mapping defined on the finite dimensional subspace. We use a contraction mapping principle to reduce the problem on the infinite dimensional space to that on the finite dimensional subspace. We construct a three-dimensional subspace with three axes spanned by three eigenvalues and a mapping from the finite dimensional subspace to the one-dimensional subspace.