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GEOMETRIC RESULT FOR THE ELLIPTIC PROBLEM

WITH NONLINEARITY CROSSING THREE

EIGENVALUES

Tacksun Jung and Q-Heung Choi∗

Abstract. We investigate the number of the solutions for the ellip-
tic boundary value problem. We obtain a theorem which shows the
existence of six weak solutions for the elliptic problem with jumping
nonlinearity crossing three eigenvalues. We get this result by using
the geometric mapping defined on the finite dimensional subspace.
We use the contraction mapping principle to reduce the problem
on the infinite dimensional space to that on the finite dimensional
subspace. We construct a three dimensional subspace with three
axis spanned by three eigenvalues and a mapping from the finite
dimensional subspace to the one dimensional subspace.

1. Introduction

Let Ω be a bounded, connected open subset of Rn with smooth bound-
ary ∂Ω and ∆ be the Laplace operator. Let 0 < λ1 < λ2 ≤ . . . ≤ λk ≤ . . .
be the eigenvalues and φk be the eigenfunctions belonging to the eigen-
value λk, k ≥ 1, of the eigenvalue problem for the elliptic problem
−∆u = λu in Ω, u = 0 on ∂Ω. We see that φ1(x) is the positive nor-
malized eigenfunction associated to λ1. In this paper we consider the
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number of the solutions of the following piecewise linear elliptic problem
with Dirichlet boundary condition

∆u+ f(u) = sφ1 in Ω,(1.1)

u = 0 on ∂Ω,

where we consider the case f(u) = bu+ − au−. That is,

∆u+ bu+ − au− = sφ1 in Ω,(1.2)

u = 0 on ∂Ω.

This type jumping problems for the wave equations are considered
by the authors in [1, 2, 3, 4]. In [5, 6, 8, 9, 10] the authors considered
this type jumping problems for the elliptic equations. In [7] the au-
thors considered this type jumping problems for the suspension bridge
equation.

McKenna and Walter [8] proved that if a < λ1 < λ2 < b, there exist
three weak solutions by the Leray-Schauder degree theory. In this paper
we improve this result to the case a < λ1 < λ2 < λ3 < b < λ4 by the
geometric method.

Our main result is the following:

Theorem 1.1. Assume that a < λ1 < λ2 < λ3 < b < λ4 and s > 0.
Then (1.2) has at least six solutions, two of which are a positive solution
s φ1
b−λ1 and a negative solution s φ1

a−λ1 .

The outline of the proof of Theorem 1.1 is as follows: In section
2, we use the contraction mapping principle to reduce the problem on
the infinite dimensional space to that on a three-dimensional subspace.
We construct a three-dimensional subspace spanned by three eigenfunc-
tions and a mapping from the three-dimensional subspace to the one-
dimensional subspace spanned by the eigenfunction φ1. In section 3 we
prove Theorem 1.1.

2. Geometric mapping on the finite dimensional subspace

Let H be the Sobolev space with the norm

‖u‖ =

∫
Ω

|∇u|2dx.
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Then problem (1.2) is equivalent to the problem

(2.1) ∆u+ bu+ − au− = sφ1 in H.

Let V be the three dimensional subspace of H spanned by {φ1, φ2, φ3}
and W be the orthogonal complement of V in H. Let P be an orthogonal
projection from H onto V . Then any element u ∈ H can be expressed
by u = v + w, where v = Pu, w = (I − P )u. Hence (2.1) is equivalent
to a system

(2.2) ∆v + P (b(v + w)+ − a(v + w)−) = sφ1,

(2.3) ∆w + (I − P )(b(v + w)+ − a(v + w)−) = 0.

Lemma 2.1. Assume that a < λ1 < λ2 < λ3 < b < λ4. Then for
fixed v ∈ V , (2.3) has a unique solution w = θ(v). Furthermore θ(v) is
Lipschitz continuous in terms of v.

Proof. We shall use the contraction mapping principle. Let δ = a+b
2

.
Then (2.3) can be rewritten as

(−∆− δ)w = (I − P )(b(v + w)+ − a(v + w)− − δ(v + w))

or

(2.4) w = (−∆− δ)−1(I − P )(b(v + w)+ − a(v + w)− − δ(v + w)).

The operator (−∆ − δ)−1(I − P ) is a self adjoint compact map from
(I − P )H into itself. The operator L2 norm of (−∆ − δ)−1(I − P ) is
‖(−∆− δ)−1(I − P )‖ = 1

λ4−δ (L
2 norm). We note that

|(b(v + w1)+ − a(v + w1)− − δ(v + w1))− (b(v + w2)+ − a(v + w2)− − δ(v + w2))|
= |((b− δ)(v + w1)+ − (a− δ)(v + w1)−)− ((b− δ)(v + w2)+ − (a− δ)(v + w2)−)|
= |((b− δ)(v + w1)+ − (b− δ)(v + w1)−)− ((b− δ)(v + w2)+ − (b− δ)(v + w2)−)|
≤ |b− δ||w1 − w2|.

Thus we have

‖(b(v + w1)+ − a(v + w1)− − δ(v + w1))− (b(v + w2)+ − a(v + w2)− − δ(v + w2))‖
≤ |b− δ|‖w1 − w2‖.

Since |b− δ| ≤ λ4 − δ, the right hand side of (2.4) defines a Lipschitz
mapping from W into itself with Lipschitz constant r < 1. By the
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contraction mapping principle, for fixed v ∈ V , there is a unique w ∈ W
which solves (2.4). If θ(v) denotes the unique w ∈ (I − P )L2(Ω) which
solves (2.4), we claim that θ is Lipschitz continuous in terms of v. In
fact, if w1 = θ(v1) and w2 = θ(v2), then

‖w1 − w2‖L2(Ω)

= ‖(−∆− δ)−1(I − P )((b(v1 + w1)+ − a(v1 + w1)− − δ(v1 + w1))

−(b(v2 + w2)+ − a(v2 + w2)− − δ(v2 + w2)))‖L2(Ω)

≤ r‖(v1 + w1)− (v2 + w2)‖L2(Ω)

≤ r(‖v1 − v2‖L2(Ω) + ‖w1 − w2‖L2(Ω)) ≤ r‖v1 − v2‖+ r‖w1 − w2‖.
Hence

‖w1 − w2‖ ≤ C‖v1 − v2‖ C =
r

1− r
.

Thus θ is Lipschitz continuous in terms of v.

By Lemma 2.1, the study of the multiplicity of the solutions of (2.1)
is reduced to that of the multiplicity of the solutions of the problem

(2.5) ∆v + P (b(v + θ(v))+ − a(v + θ(v))−) = sφ1

defined on a three-dimensional subspace V spanned by {φ1, φ2, φ3}.
We note that if v ≥ 0 or v ≤ 0, then θ(v) = 0. In fact, if v ≥ 0 and

θ(v) = 0, then (2.3) is reduced to

∆0 + (I − P )(bv+ − av−) = 0,

which is possible since v+ = v, v− = 0 and (I − P )(bv+ − av−) = 0.
Let us construct six subspaces of V as follows: Since the subspace V

is spanned by {φ1, φ2, φ3} and φ1(x) > 0 in Ω, there exist a cone C1, a
small number ε1 > 0, ε2 > 0 defined by

C1 = {v = c1φ1 + c2φ2 + c3φ3| c1 ≥ 0, |c2| ≤ ε1c1, |c3| ≤ ε2|(c1, c2)|}
so that v ≥ 0 for all v ∈ C1. Here (c1, c2) with |c2| ≤ ε1|c1| is a plane
spanned by c1φ1 and c2φ2 satisfying |c2| ≤ ε1|c1|. Let us define

C2 = {v = c1φ1 + c2φ2 + c3φ3| |c2| ≥ ε1|c1|, c2 < 0, |c3| ≤ ε2|(c1, c2)|},
C3 = {v = c1φ1 + c2φ2 + c3φ3| c1 ≤ 0, |c2| ≤ ε1c1, |c3| ≤ ε2|(c1, c2)|}

such that v ≤ 0 for all v ∈ C3. Let

C4 = {v = c1φ1 + c2φ2 + c3φ3| |c2| ≥ ε1|c1|, c2 > 0, |c3| ≤ ε2|(c1, c2)|},
C5 = {v = c1φ1 + c2φ2 + c3φ3| |c2| ≥ ε1|c1|, |c3| ≥ ε2|(c1, c2)|, c3 > 0},
C6 = {v = c1φ1 + c2φ2 + c3φ3| |c2| ≥ ε1|c1|, |c3| ≥ ε2|(c1, c2)|, c3 < 0}.
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We do not know θ(v) for all v ∈ PH, but we know that θ(v) = 0 for
v ∈ C1 ∪ C3. We consider the map

T : v −→ T (v) = ∆v + P ((b(v + θ(v))+ − a(v + θ(v))−).

If v ∈ C1, then v ≥ 0 and

T (v) = (b− λ1)c1φ1 + (b− λ2)c2φ2 + (b− λ3)c3φ3.

The image of c1φ1 + c2φ2± c3φ3, |c2| ≤ ε1c1, c1 > 0, |c3| ≤ ε2|(c1, c2)| can
be explicitly calculated and they are

(b− λ1)c1φ1 + (b− λ2)c2φ2 ± (b− λ3)c3φ3,

|c2| ≤ ε1c1, c1 > 0, |c3| ≤ ε2|(c1, c2)|
or

d1φ1 + d2φ2 ± d3φ3, d1 > 0, |d2| ≤
b− λ2

b− λ1

ε1d1,

|d3| ≤ (b− λ3)ε2|(
d1

b− λ1

, ε1
d1

b− λ1

)|

. Thus T maps C1 into the cone

D1 = {d1φ1 + d2φ2 + d3φ3| d1 > 0, |d2| ≤
b− λ2

b− λ1

ε1d1,

|d3| ≤ (b− λ3)ε2|(
d1

b− λ1

, ε1
d1

b− λ1

)|}.

Similarly T maps C3 into the cone

D3 = {d1φ1 + d2φ2 + d3φ3| d1 < 0, |d2| ≤ |
a− λ2

a− λ1

ε1d1|,

|d3| ≤ |(a− λ3)ε2(
d1

a− λ1

, ε1
d1

a− λ1

)|}.

3. Proof of Theorem 1.1

T (v) = sφ1 has one solution sφ1
b−λ1 in C1 and has one solution sφ1

a−λ1 in
C3. We shall find the other solutions in the complements of C1 ∪ C3 of
the map T (v) = sφ1 for s > 0. We need a lemma.

Lemma 3.1. There exist p1, p2 > 0 such that
(i) (T (c1φ1 + c2φ2 + c3φ3), φ1) ≥ p1|c2|.
(ii) (T (c1φ1 + c2φ2 + c3φ3), φ1) ≥ p2|c3|.
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Proof. (i)

T (c1φ1 + c2φ2 + c3φ3)

= ∆(c1φ1 + c2φ2 + c3φ3) + P ((b(c1φ1 + c2φ2 + c3φ3 + θ(c1φ1 + c2φ2 + c3φ3))+

−a(c1φ1 + c2φ2 + c3φ3 + θ(c1φ1 + c2φ2 + c3φ3))−)

If u = c1φ1 + c2φ2 + c3φ3 + θ(c1φ1 + c2φ2 + c3φ3), then

(T (c1φ1 + c2φ2 + c3φ3), φ1)

= ((∆ + λ1)(c1φ1 + c2φ2 + c3φ3) + P (bu+ − au− − λ1u, φ1).

Since (∆ + λ1)φ1 = 0 and ∆ is self adjoint, ((∆ + λ1)(c1φ1 + c2φ2 +
c3φ3), φ1) = 0. We note that

bu+ − au− − λ1u = (b− λ1)u+ − (a− λ1)u− ≥ γ|u|,
where γ = min{b− λ1,−a+ λ1} > 0. Thus

(bu+ − au− − λ1u, φ1) ≥ γ

∫
Ω

|u|φ1.

Thus there exists p1 > 0 such that γφ1 > p1|φ2|, so that

γ

∫
Ω

|u|φ1 ≥ p1

∫
Ω

|u||φ2| ≥ p1|
∫

Ω

uφ2| = p1|(u, φ2)| = p1|c2|.

(ii) We also have that

γ

∫
Ω

|u|φ1 ≥ p2

∫
Ω

|u||φ3| ≥ p2|
∫

Ω

uφ3| = p2|(u, φ3)| = p2|c3|,

for some p2 > 0 such that γφ1 ≥ p2|φ3|.

Now we are looking for the preimages of the mapping T (v) = sφ1, for
s > 0, in the complement of C1∪C3. Let us consider the image under T
of c1φ1 + c2φ2 + c3φ3 ∈ C4, c2 ≥ ε1|c1|, c2 = k, k > 0, |c3| ≤ ε2|(c1, c2)|.
By (i) of Lemma 3.1, the image of

c2 = k, |c1| ≤
1

ε1
k, |c3| ≤ ε2|(c1, k)|

must lie to the right of the line c1 = p1k and must cross the positive φ1

axis in the image space. Thus if u = c1φ1 + kφ2 + c3φ3 + θ(c1φ1 + kφ2 +
c3φ3), k > 0, |c1| < k

ε1
, |c3| ≤ ε2|(c1, k)|, then u satisfies

∆u+ bu+ − au− = tφ1 for t > p1k, k > 0.
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If we set

û =
s

t
u,

then û is a solution of ∆û+ bû+−aû− = sφ1. Thus we obtain a solution
û in C4. Similarly, the image under T of c1φ1 + c2φ2 + c3φ3 ∈ C2,
|c2| ≥ ε1|c1|, c2 = k, k < 0, |c3| ≤ ε2||(c1, c2)|. By (i) of Lemma 3.1, the
image of

c2 = k, k < 0, |c1| ≤
1

ε1
k, |c3| ≤ ε2|(c1, k)|

must lie to the right of the line c1 = p1|k| and must cross the positive φ1

axis in the image space. Thus if u = c1φ1 + kφ2 + c3φ3 + θ(c1φ1 + kφ2 +
c3φ3), k < 0, |c1| < k

ε1
, |c3| ≤ ε2|(c1, k)|, then u satisfies

∆u+ bu+ − au− = tφ1 for t > p1|k|, k < 0.

If we set

ǔ =
s

t
u,

then ǔ is a solution of ∆ǔ+ bǔ+−aǔ− = sφ1. Thus we obtain a solution
ǔ in C2.

Now we consider the image under T of c1φ1 + c2φ2 + lφ3 ∈ C5, |c2| ≥
ε1|c1|, |l| ≥ ε2|(c1, c2)|, l > 0. By (ii) of Lemma 3.1, the image of

c3 = l, |c2| ≥ ε1|c1|, |l| ≥ ε2|(c1, c2)|

must lie to the right of the line c1 = p2|l| and must cross the positive φ1

axis in the image space. Thus if u = c1φ1+c2φ2+lφ3+θ(c1φ1+c2φ2+lφ3),
l > 0, |c2| ≥ ε1|c1|, |l| ≥ ε2|(c1, c2)|, then u satisfies

∆u+ bu+ − au− = tφ1 for t > p2l, l > 0.

If we set

ū =
s

t
u,

then ū is a solution of ∆ū+ bū+−aū− = sφ1. Thus we obtain a solution
ū in C5 for given s > 0.

Now we consider the image under T of c1φ1 + c2φ2 + lφ3 ∈ C6, |c2| ≥
ε1|c1|, |l| ≥ ε2|(c1, c2)|, l < 0. By (ii) of Lemma 3.1, the image of

c3 = l, |c2| ≥ ε1|c1|, |l| ≥ ε2|(c1, c2)|
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must lie to the right of the line c1 = p2|l| and must cross the positive φ1

axis in the image space. Thus if u = c1φ1+c2φ2+lφ3+θ(c1φ1+c2φ2+lφ3),
l < 0, |c2| ≥ ε1|c1|, |l| ≥ ε2|(c1, c2)|, then u satisfies

∆u+ bu+ − au− = tφ1 for t > p2|l|, l < 0.

If we set

ũ =
s

t
u,

then ũ is a solution of ∆ũ + bũ+ − aũ− = sφ1. Thus we also have a
solution ũ in C6 for given s > 0.

For given s > 0, there exist six solutions, one in each of the six regions.
There exist a positive solution sφ1

b−λ1 in C1, a negative solution sφ1
a−λ1 in

C3, a solution û in C4, a solution ǔ in C2, a solution ū in C5, a solution
ũ in C6 of (1.2). Thus we complete the proof of Theorem 1.1.
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