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SIX SOLUTIONS FOR THE SEMILINEAR WAVE

EQUATION WITH NONLINEARITY CROSSING THREE

EIGENVALUES

Q-Heung Choi and Tacksun Jung∗

Abstract. We get a theorem which shows the existence of at least
six solutions for the semilinear wave equation with nonlinearity cross-
ing three eigenvalues. We obtain this result by the variational re-
duction method and the geometric mapping defined on the finite
dimensional subspace. We use a contraction mapping principle to
reduce the problem on the infinite dimensional space to that on the
finite dimensional subspace. We construct a three-dimensional sub-
space with three axes spanned by three eigenvalues and a mapping
from the finite dimensional subspace to the one-dimensional sub-
space.

1. Introduction and main result

In this paper we concern with the number of periodic solutions of a
semilinear wave equation with Dirichlet boundary condition

utt − uxx + bu+ − au− = f(x, t) in (−π

2
,
π

2
)×R,

u(±π

2
, t) = 0,(1.1)

u is π − periodic in t and even in x and t,
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where u+ = max{0, u}.
This type of jumping nonlinear problem is considered by many au-

thors ( [1], [2], [3], [4], [5], [6], [7], [8]). McKenna and Walter [8] consid-
ered the elliptic case and proved by the Leray-Schauder degree theory
that if the operator is elliptic operator in (1.1) and a < λ1 < λ2 < b,
there exist three weak solutions , where λ1 and λ2 are the first eigen-
value and the second one of the elliptic eigenvalue problem. Choi and
Jung [1] proved that if −1 < a < 3 < b < 7 with 1√

a+1
+ 1√

b+7
> 1 and

f(x, t) = sϕ00 (ϕ00 =
√
2

π
cos x is the positive eigenfunction and s ∈ R),

then for the case s > 0, (1.1) has at least three solutions, one of which is
a positive solution, and for the case s < 0, (1.1) has at least one solution,
which is a negative solution. They proved this result by the variational
reduction method. They [4] also proved that if −5 < a < −1, 3 < b < 7
and f(x, t) = sϕ00, then there exists s0 > 0 such that if s ≥ s0, (1.1)
has at least four solutions, one of which is a positive solution, another
of which is a negative solution. They got this result by the mapping
from the two-dimensional subspace spanned by ϕ00 and ϕ10 to the space
spanned by ϕ00 and for the case s < 0, (1.1) has at least one solution,
which is a negative solution. In this paper we improve this result. To
state our result, we need some notations.

The eigenvalue problem

utt − uxx = λu in (−π

2
,
π

2
)×R.

u(±π

2
, t) = 0,(1.2)

u(x, t) = u(−x, t) = u(x,−t) = u(x, t+ π)

has infinitely many eigenvalues

λmn = (2n+ 1)2 − 4m2, m, n = 0, 1, 2, . . . .

The eigenvalues in the interval (−15, 9) are given by

λ32 = −11 < λ21 = −7 < λ10 = −3 < λ00 = 1 < λ11 = 5.

The corresponding normalized eigenfunctions ϕmn(x, t)( m, n > 0) given
by

ϕ0n =

√
2

π
cos(2n+ 1)x for n ≥ 0,

ϕmn =
2

π
cos 2mt cos(2n+ 1)x for m > 0, n ≥ 0.
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We will look for the π−periodic solutions of (1.1) when f(x, t) = sϕ00.
Our main result is the following:

Theorem 1.1. Let f(x, t) = sϕ00 and −5 < a < −1 = −λ00,−λ10 =
3,−λ21 = 7 < b < 11 and s > 0. Then (1.1) has at least six π−periodic
solutions.

The outline of the proof of Theorem 1.1 is as follows: In section 2,
we first construct a three-dimensional subspace spanned by three eigen-
functions ϕ00, ϕ10, ϕ21 and use the contraction mapping principle to
reduce the problem on the infinite dimensional space to that on a three-
dimensional subspace. We next construct a mapping from the three-
dimensional subspace to the one-dimensional subspace spanned by the
eigenfunction ϕ00 and try to find the preimages of the mapping. In
section 3, we prove Theorem 1.1.

2. Reduction to the three dimensional subspace

Let Q be the square [−π
2
, π
2
] × [−π

2
, π
2
] and H be the Hilbert space

defined by

H = {u ∈ L2(Q)| u is even in x and t}.
Then the set of functions {ϕmn| m,n = 0, 1, 2, · · · } is an orthonormal
basis in H. Problem (1.1) is equivalent to the problem

(2.1) utt − uxx + bu+ − au− = sϕ1 in H.

Let V be the three-dimensional subspace of H spanned by {ϕ00, ϕ10, ϕ21}
andW be the orthogonal complement of V inH. Let P be an orthogonal
projection from H onto V . Then any element u ∈ H can be expressed
by u = v + w, where v = Pu, w = (I − P )u. Hence (2.1) is equivalent
to a system

(2.2) vtt − vxx + P (b(v + w)+ − a(v + w)−) = sϕ00,

(2.3) wtt − wxx + (I − P )(b(v + w)+ − a(v + w)−) = 0.

Lemma 2.1. Assume that f(x, t) = sϕ00 and −5 < a < −1 =
−λ00,−λ10 = 3,−λ21 = 7 < b < 11. Then for fixed v ∈ V , (2.3) has a
unique solution w = θ(v). Furthermore θ(v) is Lipschitz continuous in
terms of v.
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Proof. We shall use the contraction mapping principle. Let δ = a+b
2
.

Then (2.3) can be rewritten as

(−Dtt +Dxx − δ)w = (I − P )(b(v + w)+ − a(v + w)− − δ(v + w))

or

(2.4) w = (−Dtt +Dxx − δ)−1(I − P )(b(v + w)+ − a(v + w)− − δ(v + w)).

The operator (−Dtt +Dxx − δ)−1(I − P ) is a self adjoint compact map
from (I−P )H into itself. The operator L2 norm ∥(−Dtt+Dxx−δ)−1(I−
P )∥ is max{ 1

|−5−δ| ,
1

|11−δ|}. We note that

|(b(v + w1)
+ − a(v + w1)

− − δ(v + w1))− (b(v + w2)
+ − a(v + w2)

− − δ(v + w2))|

= |((b− δ)(v + w1)
+ − (a− δ)(v + w1)

−)− ((b− δ)(v + w2)
+ − (a− δ)(v + w2)

−)|

= |((b− δ)(v + w1)
+ − (b− δ)(v + w1)

−)− ((b− δ)(v + w2)
+ − (b− δ)(v + w2)

−)|
≤ |b− δ||w1 − w2|.

Thus we have

∥(b(v + w1)
+ − a(v + w1)

− − δ(v + w1))− (b(v + w2)
+ − a(v + w2)

− − δ(v + w2))∥L2(Q)

≤ |b− δ|∥w1 − w2∥L2(Q).

Since |b−δ| ≤ min{|−5−δ|, |11−δ|}, the right hand side of (2.4) defines
a Lipschitz mapping from W into itself with Lipschitz constant r < 1.
By the contraction mapping principle, for fixed v ∈ V , there is a unique
w ∈ W which solves (2.4). If θ(v) denotes the unique w ∈ (I −P )L2(Ω)
which solves (2.4), we claim that θ is Lipschitz continuous in terms of v.
In fact, if w1 = θ(v1) and w2 = θ(v2), then

∥w1 − w2∥L2(Ω)

= ∥(−Dtt +Dxx − δ)−1(I − P )((b(v1 + w1)
+ − a(v1 + w1)

− − δ(v1 + w1))

− (b(v2 + w2)
+ − a(v2 + w2)

− − δ(v2 + w2)))∥L2(Ω)

≤ r∥(v1 + w1)− (v2 + w2)∥L2(Ω)

≤ r(∥v1 − v2∥L2(Ω) + ∥w1 − w2∥L2(Ω)).

Hence

∥w1 − w2∥L2(Q) ≤ C∥v1 − v2∥L2(Q) C =
r

1− r
.

Thus θ is Lipschitz continuous in terms of v.
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By Lemma 2.1, the study of the multiplicity of solutions of (2.1) is
reduced to that of the multiplicity of the solutions of the problem

(2.5) vtt − vxx + P (b(v + θ(v))+ − a(v + θ(v))−) = sϕ00

defined on a three-dimensional subspace V spanned by {ϕ00, ϕ10, ϕ21}.
We note that if v ≥ 0 or v ≤ 0, then θ(v) = 0. In fact, if v ≥ 0 and

θ(v) = 0, then (2.3) is reduced to

(Dtt −Dxx)0 + (I − P )(bv+ − av−) = 0,

which is possible since v+ = v, v− = 0 and (I − P )(bv+ − av−) = 0.
Let us construct six subspaces of V as follows: Since the subspace V

is spanned by {ϕ00, ϕ10, ϕ21} and ϕ00(x) > 0 in Q, there exist a cone C1,
a small number ϵ1 > 0, ϵ2 > 0 defined by

C1 = {v = c1ϕ00 + c2ϕ10 + c3ϕ21| c1 ≥ 0, |c2| ≤ ϵ1c1, |c3| ≤ ϵ2|(c1, c2)|}
so that v ≥ 0 for all v ∈ C1. Here (c1, c2) with |c2| ≤ ϵ1|c1| is a plane
spanned by ϕ00 and ϕ10 satisfying |c2| ≤ ϵ1|c1|. Let us define
C2 = {v = c1ϕ00 + c2ϕ10 + c3ϕ21| |c2| ≥ ϵ1|c1|, c2 < 0, |c3| ≤ ϵ2|(c1, c2)|},
C3 = {v = c1ϕ00 + c2ϕ10 + c3ϕ21| c1 ≤ 0, |c2| ≤ ϵ1c1, |c3| ≤ ϵ2|(c1, c2)|}
such that v ≤ 0 for all v ∈ C3. Let

C4 = {v = c1ϕ00 + c2ϕ10 + c3ϕ21| |c2| ≥ ϵ1|c1|, c2 > 0, |c3| ≤ ϵ2|(c1, c2)|},
C5 = {v = c1ϕ00 + c2ϕ10 + c3ϕ21| |c2| ≥ ϵ1|c1|, |c3| ≥ ϵ2|(c1, c2)|, c3 > 0},
C6 = {v = c1ϕ00 + c2ϕ10 + c3ϕ21| |c2| ≥ ϵ1|c1|, |c3| ≥ ϵ2|(c1, c2)|, c3 < 0}.
We do not know θ(v) for all v ∈ PH, but we know that θ(v) = 0 for
v ∈ C1 ∪ C3. We consider the map

F : v −→ F (v) = vtt − vxx + P ((b(v + θ(v))+ − a(v + θ(v))−).

If v ∈ C1, then v ≥ 0 and

F (v) = (b+ 1)c1ϕ00 + (b− 3)c2ϕ10 + (b− 7)c3ϕ21.

The image of c1ϕ00 + c2ϕ10 ± c3ϕ21, |c2| ≤ ϵ1c1, c1 > 0, |c3| ≤ ϵ2|(c1, c2)|
can be explicitly calculated and they are

(b+ 1)c1ϕ00 + (b− 3)c2ϕ10 ± (b− 7)c3ϕ21,

|c2| ≤ ϵ1c1, c1 > 0, |c3| ≤ ϵ2|(c1, c2)|
or

d1ϕ00 + d2ϕ10 ± d3ϕ21, d1 > 0, |d2| ≤
b− 3

b+ 1
ϵ1d1,
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|d3| ≤ (b− 7)ϵ2|(
d1

b+ 1
, ϵ1

d1
b+ 1

)|

. Thus F maps C1 into the cone

D1 = {d1ϕ00 + d2ϕ10 + d3ϕ21| d1 > 0, |d2| ≤
b− 3

b+ 1
ϵ1d1,

|d3| ≤ (b− 7)ϵ2|(
d1

b+ 1
, ϵ1

d1
b+ 1

)|}.

Similarly F maps C3 into the cone

D3 = {d1ϕ00 + d2ϕ10 + d3ϕ21| d1 < 0, |d2| ≤ |a− 3

a+ 1
ϵ1d1|,

|d3| ≤ |(a− 7)ϵ2(
d1

a+ 1
, ϵ1

d1
a+ 1

)|}.

3. Proof of Theorem 1.1

F (v) = sϕ00, s > 0, has one solution sϕ00

b+1
in C1 and has one solution

sϕ1

a+1
in C3. We shall find the other solutions in the complements of C1∪C3

of the map F (v) = sϕ00 for s > 0. We need a lemma.

Lemma 3.1. There exist p1, p2 > 0 such that

(i) (F (c1ϕ00 + c2ϕ10 + c3ϕ20), ϕ00) ≥ p1|c2|.

(ii) (F (c1ϕ00 + c2ϕ10 + c3ϕ20), ϕ00) ≥ p2|c3|.

Proof. (i)

F (c1ϕ00 + c2ϕ10 + c3ϕ20)

= (Dtt −Dxx)(c1ϕ00 + c2ϕ10 + c3ϕ21)

+P ((b(c1ϕ00 + c2ϕ10 + c3ϕ21 + θ(c1ϕ00 + c2ϕ10 + c3ϕ21))
+

−a(c1ϕ00 + c2ϕ10 + c3ϕ21 + θ(c1ϕ00 + c2ϕ10 + c3ϕ21))
−).

If u = c1ϕ00 + c2ϕ10 + c3ϕ21 + θ(c1ϕ00 + c2ϕ10 + c3ϕ21), then

(F (c1ϕ00 + c2ϕ10 + c3ϕ21), ϕ00)

= ((Dtt −Dxx − 1)(c1ϕ00 + c2ϕ10 + c3ϕ21) + P (bu+ − au− + u, ϕ00).
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Since (Dtt−Dxx− 1)ϕ00 = 0 and Dtt−Dxx is self adjoint, ((Dtt−Dxx−
1)(c1ϕ00 + c2ϕ10 + c3ϕ21), ϕ00) = 0. We note that

bu+ − au− + u = (b+ 1)u+ − (a+ 1)u− ≥ γ|u|,

where γ = min{b+ 1,−a− 1} > 0. Thus

(bu+ − au− + u, ϕ00) ≥ γ

∫
Q

|u|ϕ00.

Thus there exists p1 > 0 such that γϕ00 > p1|ϕ10|, so that

γ

∫
Q

|u|ϕ00 ≥ p1

∫
Q

|u||ϕ10| ≥ p1|
∫
Q

uϕ10| = p1|(u, ϕ10)| = p1|c2|.

(ii) We also have that

γ

∫
Q

|u|ϕ00 ≥ p2

∫
Q

|u||ϕ21| ≥ p2|
∫
Q

uϕ21| = p2|(u, ϕ21)| = p2|c3|,

for some p2 > 0 such that γϕ00 ≥ p2|ϕ21|.

Now we are looking for the preimages of the mapping F (v) = sϕ00, for
s > 0, in the complement of C1∪C3. Let us consider the image under F
of c1ϕ00+c2ϕ10+c3ϕ21 ∈ C4, c2 ≥ ϵ1|c1|, c2 = k, k > 0, |c3| ≤ ϵ2|(c1, c2)|.
By (i) of Lemma 3.1, the image of

c2 = k, |c1| ≤
1

ϵ1
k, |c3| ≤ ϵ2|(c1, k)|

must lie to the right of the line c1 = p1k and must cross the positive ϕ00

axis in the image space. Thus if u = c1ϕ00 + kϕ10 + c3ϕ21 + θ(c1ϕ00 +
kϕ10 + c3ϕ21), k > 0, |c1| < k

ϵ1
, |c3| ≤ ϵ2|(c1, k)|, then u satisfies

utt − uxx + bu+ − au− = tϕ00 for t > p1k, k > 0.

If we set

û =
s

t
u,

then û is a solution of ûtt − ûxx + bû+ − aû− = sϕ00. Thus we obtain a
solution û in C4. Similarly, the image under F of c1ϕ00+ c2ϕ10+ c3ϕ21 ∈
C2, |c2| ≥ ϵ1|c1|, c2 = k, k < 0, |c3| ≤ ϵ2|(c1, c2)|. By (i) of Lemma 3.1,
the image of

c2 = k, k < 0, |c1| ≤
1

ϵ1
k, |c3| ≤ ϵ2|(c1, k)|
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must lie to the right of the line c1 = p1|k| and must cross the positive
ϕ00 axis in the image space. Thus if u = c1ϕ00+kϕ10+ c3ϕ21+ θ(c1ϕ00+
kϕ10 + c3ϕ21), k < 0, |c1| < k

ϵ1
, |c3| ≤ ϵ2|(c1, k)|, then u satisfies

utt − uxx + bu+ − au− = tϕ00 for t > p1|k|, k < 0.

If we set

ǔ =
s

t
u,

then ǔ is a solution of ǔtt − ǔxx + bǔ+ − aǔ− = sϕ00. Thus we obtain a
solution ǔ in C2.

Now we consider the image under F of c1ϕ00 + c2ϕ10 + lϕ21 ∈ C5,
|c2| ≥ ϵ1|c1|, |l| ≥ ϵ2|(c1, c2)|, l > 0. By (ii) of Lemma 3.1, the image of

c3 = l, |c2| ≥ ϵ1|c1|, |l| ≥ ϵ2|(c1, c2)|
must lie to the right of the line c1 = p2|l| and must cross the positive
ϕ00 axis in the image space. Thus if u = c1ϕ00 + c2ϕ10 + lϕ21 + θ(c1ϕ00 +
c2ϕ10 + lϕ21), l > 0, |c2| ≥ ϵ1|c1|, |l| ≥ ϵ2|(c1, c2)|, then u satisfies

utt − uxx + bu+ − au− = tϕ00 for t > p2l, l > 0.

If we set

ū =
s

t
u,

then ū is a solution of ūtt − ūxx + bū+ − aū− = sϕ00. Thus we obtain a
solution ū in C5 for given s > 0.

Now we consider the image under F of c1ϕ00 + c2ϕ10 + lϕ21 ∈ C6,
|c2| ≥ ϵ1|c1|, |l| ≥ ϵ2|(c1, c2)|, l < 0. By (ii) of Lemma 3.1, the image of

c3 = l, |c2| ≥ ϵ1|c1|, |l| ≥ ϵ2|(c1, c2)|
must lie to the right of the line c1 = p2|l| and must cross the positive
ϕ00 axis in the image space. Thus if u = c1ϕ00 + c2ϕ10 + lϕ21 + θ(c1ϕ00 +
c2ϕ10 + lϕ21), l < 0, |c2| ≥ ϵ1|c1|, |l| ≥ ϵ2|(c1, c2)|, then u satisfies

utt − uxx + bu+ − au− = tϕ00 for t > p2|l|, l < 0.

If we set

ũ =
s

t
u,

then ũ is a solution of ũtt − ũxx + bũ+ − aũ− = sϕ00. Thus we also have
a solution ũ in C6 for given s > 0.

For given s > 0, there exist six solutions, one in each of the six regions.
There exist a positive solution sϕ00

b+1
in C1, a negative solution sϕ00

a+1
in C3,
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a solution û in C4, a solution ǔ in C2, a solution ū in C5, a solution ũ in
C6 of (1.2). Thus we complete the proof of Theorem 1.1.
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