• Title/Summary/Keyword: Boundary-Value Problems

Search Result 368, Processing Time 0.032 seconds

SINGULAR THIRD-ORDER 3-POINT BOUNDARY VALUE PROBLEMS

  • Palamides, Alex P.
    • Journal of applied mathematics & informatics
    • /
    • v.28 no.3_4
    • /
    • pp.697-710
    • /
    • 2010
  • In this paper, we prove existence of infinitely many positive and concave solutions, by means of a simple approach, to $3^{th}$ order three-point singular boundary value problem {$x^{\prime\prime\prime}(t)=\alpha(t)f(t,x(t))$, 0 < t < 1, $x(0)=x'(\eta)=x^{\prime\prime}(1)=0$, (1/2 < $\eta$ < 1). Moreover with respect to multiplicity of solutions, we don't assume any monotonicity on the nonlinearity. We rely on a combination of the analysis of the corresponding vector field on the phase-space along with Knesser's type properties of the solutions funnel and the well-known Krasnosel'ski$\breve{i}$'s fixed point theorem. The later is applied on a new very simple cone K, just on the plane $R^2$. These extensions justify the efficiency of our new approach compared to the commonly used one, where the cone $K\;{\subset}\;C$ ([0, 1], $\mathbb{R}$) and the existence of a positive Green's function is a necessity.

SOLUTIONS OF STURM-LIOUVILLE TYPE MULTI-POINT BOUNDARY VALUE PROBLEMS FOR HIGHER-ORDER DIFFERENTIAL EQUATIONS

  • Liu, Yuji
    • Journal of applied mathematics & informatics
    • /
    • v.23 no.1_2
    • /
    • pp.167-182
    • /
    • 2007
  • The existence of solutions of the following multi-point boundary value problem $${x^{(n)}(t)=f(t,\;x(t),\;x'(t),{\cdots}, x^{(n-2)}(t))+r(t),\;0 is studied. Sufficient conditions for the existence of at least one solution of BVP(*) are established. It is of interest that the growth conditions imposed on f are allowed to be super-linear (the degrees of phases variables are allowed to be greater than 1 if it is a polynomial). The results are different from known ones since we don't apply the Green's functions of the corresponding problem and the method to obtain a priori bounds of solutions are different enough from known ones. Examples that can not be solved by known results are given to illustrate our theorems.

POSITIVE PSEUDO-SYMMETRIC SOLUTIONS FOR THREE-POINT BOUNDARY VALUE PROBLEMS WITH DEPENDENCE ON THE FIRST ORDER DERIVATIVE

  • Guo, Yanping;Han, Xiaohu;Wei, Wenying
    • Journal of applied mathematics & informatics
    • /
    • v.28 no.5_6
    • /
    • pp.1323-1329
    • /
    • 2010
  • In this paper, a new fixed point theorem in cone is applied to obtain the existence of at least one positive pseudo-symmetric solution for the second order three-point boundary value problem {x" + f(t, x, x')=0, t $\in$ (0, 1), x(0)=0, x(1)=x($\eta$), where f is nonnegative continuous function; ${\eta}\;{\in}$ (0, 1) and f(t, u, v) = f(1+$\eta$-t, u, -v).

POSITIVE SOLUTIONS OF MULTI-POINT BOUNDARY VALUE PROBLEMS OF NONLINEAR FRACTIONAL DIFFERENTIAL EQUATION AT RESONANCE

  • Yang, Aijun;Ge, Weigao
    • The Pure and Applied Mathematics
    • /
    • v.16 no.2
    • /
    • pp.213-225
    • /
    • 2009
  • This paper deals with the existence of positive solutions for a kind of multi-point nonlinear fractional differential boundary value problem at resonance. Our main approach is different from the ones existed and our main ingredient is the Leggett-Williams norm-type theorem for coincidences due to O'Regan and Zima. The most interesting point is the acquisition of positive solutions for fractional differential boundary value problem at resonance. And an example is constructed to show that our result here is valid.

  • PDF

A boundary radial point interpolation method (BRPIM) for 2-D structural analyses

  • Gu, Y.T.;Liu, G.R.
    • Structural Engineering and Mechanics
    • /
    • v.15 no.5
    • /
    • pp.535-550
    • /
    • 2003
  • In this paper, a boundary-type meshfree method, the boundary radial point interpolation method (BRPIM), is presented for solving boundary value problems of two-dimensional solid mechanics. In the BRPIM, the boundary of a problem domain is represented by a set of properly scattered nodes. A technique is proposed to construct shape functions using radial functions as basis functions. The shape functions so formulated are proven to possess both delta function property and partitions of unity property. Boundary conditions can be easily implemented as in the conventional Boundary Element Method (BEM). The Boundary Integral Equation (BIE) for 2-D elastostatics is discretized using the radial basis point interpolation. Some important parameters on the performance of the BRPIM are investigated thoroughly. Validity and efficiency of the present BRPIM are demonstrated through a number of numerical examples.

AN SDFEM FOR A CONVECTION-DIFFUSION PROBLEM WITH NEUMANN BOUNDARY CONDITION AND DISCONTINUOUS SOURCE TERM

  • Babu, A. Ramesh;Ramanujam, N.
    • Journal of applied mathematics & informatics
    • /
    • v.28 no.1_2
    • /
    • pp.31-48
    • /
    • 2010
  • In this article, we consider singularly perturbed Boundary Value Problems(BVPs) for second order Ordinary Differential Equations (ODEs) with Neumann boundary condition and discontinuous source term. A parameter-uniform error bound for the solution is established using the Streamline-Diffusion Finite Element Method (SDFEM) on a piecewise uniform meshes. We prove that the method is almost second order of convergence in the maximum norm, independently of the perturbation parameter. Further we derive superconvergence results for scaled derivatives of solution of the same problem. Numerical results are provided to substantiate the theoretical results.

EXISTENCE OF POSITIVE SOLUTIONS FOR GENERALIZED LAPLACIAN PROBLEMS WITH A PARAMETER

  • Kim, Chan-Gyun
    • East Asian mathematical journal
    • /
    • v.38 no.1
    • /
    • pp.33-41
    • /
    • 2022
  • In this paper, we study singular Dirichlet boundary value problems involving ϕ-Laplacian. Using fixed point index theory, the existence of positive solutions is established under the assumption that the nonlinearity f = f(u) has a positive falling zero and is either superlinear or sublinear at u = 0.

Active vibration control of flexible beam using piezoelectric actuator (압전소자를 액츄에이터로 이용한 탄성보진동의 능동제어)

  • 김종선
    • Journal of KSNVE
    • /
    • v.2 no.3
    • /
    • pp.173-180
    • /
    • 1992
  • A boundary control method that controls interior state by actively controlling the boundary conditions in boundary value problems is proposed for the vibration control of flexible beam by using piezoelectric actuators. The governing equations are derived based on the Euler beam theory and the reduced order model is obtained by modal truncation. The spillover effects caused by the uncontrolled high frequency modes are analyzed and the method selecting a suitable sensor location is also proposed. The lag compensator in digital form is realized by using a microcomputer and its peripheral devices. The efficiency of the proposed control scheme is demonstrated experimentally and compared with the simulation results.

  • PDF

ON UNIFORM DECAY OF WAVE EQUATION OF CARRIER MODEL SUBJECT TO MEMORY CONDITION AT THE BOUNDARY

  • Bae, Jeong-Ja;Yoon, Suk-Bong
    • Journal of the Korean Mathematical Society
    • /
    • v.44 no.4
    • /
    • pp.1013-1024
    • /
    • 2007
  • In this paper we consider the uniform decay for the wave equation of Carrier model subject to memory condition at the boundary. We prove that if the kernel of the memory decays exponentially or polynomially, then the solutions for the problems have same decay rates.

Existence of Positive Solutions for a Class of Conformable Fractional Differential Equations with Parameterized Integral Boundary Conditions

  • Haddouchi, Faouzi
    • Kyungpook Mathematical Journal
    • /
    • v.61 no.1
    • /
    • pp.139-153
    • /
    • 2021
  • In this paper, we study the existence of positive solutions for a class of conformable fractional differential equations with integral boundary conditions. By using the properties of Green's function with the fixed point theorem in a cone, we prove the existence of a positive solution. We also provide some examples to illustrate our results.