SOLUTIONS OF STURM-LIOUVILLE TYPE MULTI-POINT BOUNDARY VALUE PROBLEMS FOR HIGHER-ORDER DIFFERENTIAL EQUATIONS

  • Liu, Yuji (Department of Mathematics, Guangdong University of Business Studies)
  • Published : 2007.01.31

Abstract

The existence of solutions of the following multi-point boundary value problem $${x^{(n)}(t)=f(t,\;x(t),\;x'(t),{\cdots}, x^{(n-2)}(t))+r(t),\;0 is studied. Sufficient conditions for the existence of at least one solution of BVP(*) are established. It is of interest that the growth conditions imposed on f are allowed to be super-linear (the degrees of phases variables are allowed to be greater than 1 if it is a polynomial). The results are different from known ones since we don't apply the Green's functions of the corresponding problem and the method to obtain a priori bounds of solutions are different enough from known ones. Examples that can not be solved by known results are given to illustrate our theorems.

Keywords