DOI QR코드

DOI QR Code

ON UNIFORM DECAY OF WAVE EQUATION OF CARRIER MODEL SUBJECT TO MEMORY CONDITION AT THE BOUNDARY

  • Published : 2007.07.30

Abstract

In this paper we consider the uniform decay for the wave equation of Carrier model subject to memory condition at the boundary. We prove that if the kernel of the memory decays exponentially or polynomially, then the solutions for the problems have same decay rates.

Keywords

References

  1. J. J. Bae, On uniform decay of coupled wave equation of Kirchhoff type subject to memory condition on the boundary, Nonlinear Anal. 61 (2005), no. 3, 351-372 https://doi.org/10.1016/j.na.2004.11.014
  2. G. F. Carrier, On the non-linear vibration problem of the elastic string, Quart. Appl. Math. 3 (1945), 157-165 https://doi.org/10.1090/qam/12351
  3. M. M. Cavalcanti, V. N. Domingos Cavalcanti, and M. L. Santos, Existence and uniform decay rates of solutions to a degenerate system with memory conditions at the boundary, Appl. Math. Comput. 150 (2004), no. 2, 439-465 https://doi.org/10.1016/S0096-3003(03)00284-4
  4. A. T. Cousin, C. L. Frota, N. A. Lar'kin, and L. A. Medeiros, On the abstract model of the Kirchhoff-Carrier equation, Commun. Appl. Anal. 1 (1997), no. 3, 389-404
  5. C. L. Frota , A. T. Cousin, and L. A. Lar'kin, Existence of global solutions and energy decay for the Carrier equation with dissipative term, Differential Integral Equations 12 (1999), no. 4, 453-469
  6. T. Matsuyama, Quasilinear hyperbolic-hyperbolic singular perturbations with nonmonotone nonlinearity, Nonlinear Anal. 35 (1999), no. 5, 589-607 https://doi.org/10.1016/S0362-546X(97)00737-2
  7. N. T. Long, On the nonlinear wave equation $u_{tt}\;-\;B(t,\;{\parallel}u{\parallel}^2,\;{\parallel}u_x{\parallel}^2)u_{xx}\;=\;f(x,\;t,\;u,\;u_x,\;u_t,\;{\parallel}u{\parallel}^2,\;{\parallel}u_x{\parallel}^2)$ associated with the mixed homogeneous conditions, J. Math. Anal. Appl. 306 (2005), no. 1, 243-268 https://doi.org/10.1016/j.jmaa.2004.12.053
  8. J. Y. Park, J. J. Bae, and I. H. Jung, On existence of global solutions for the carrier model with nonlinear damping and source terms, Appl. Anal. 77 (2001), no. 3-4, 305-318 https://doi.org/10.1080/00036810108840910
  9. J. Y. Park, J. J. Bae, and I. H. Jung, Uniform decay of solution for wave equation of Kirchhoff type with nonlinear boundary damping and memory term, Nonlinear Anal. 50 (2002), no. 7, 871-884 https://doi.org/10.1016/S0362-546X(01)00781-7
  10. M. L. Santos, J. Ferreira, D. C. Pereira, and C. A. Raposo, Global existence and stability for wave equation of Kirchhoff type with memory condition at the boundary, Nonlinear Anal. 54 (2003), no. 5, 959-976 https://doi.org/10.1016/S0362-546X(03)00121-4

Cited by

  1. General decay for a wave equation of Kirchhoff type with a boundary control of memory type vol.2011, pp.1, 2011, https://doi.org/10.1186/1687-2770-2011-55
  2. Control of a riser through the dynamic of the vessel vol.95, pp.9, 2016, https://doi.org/10.1080/00036811.2015.1080249
  3. Uniform Stabilization of an Axially Moving Kirchhoff String by a Boundary Control of Memory Type vol.23, pp.2, 2017, https://doi.org/10.1007/s10883-016-9310-2
  4. Uniform Stabilization of aNonlinear Axially Moving String by a Boundary Control of Memory Type 2018, https://doi.org/10.1007/s10883-017-9370-y