• Title/Summary/Keyword: Boundary-Value Problems

Search Result 368, Processing Time 0.026 seconds

ON SOME PROPERTIES OF BARRIERS AT INFINITY FOR SECOND ORDER UNIFORMLY ELLIPTIC OPERATORS

  • Cho, Sungwon
    • The Pure and Applied Mathematics
    • /
    • v.25 no.2
    • /
    • pp.59-71
    • /
    • 2018
  • We consider the boundary value problem with a Dirichlet condition for a second order linear uniformly elliptic operator in a non-divergence form. We study some properties of a barrier at infinity which was introduced by Meyers and Serrin to investigate a solution in an exterior domains. Also, we construct a modified barrier for more general domain than an exterior domain.

Multiple Unbounded Positive Solutions for the Boundary Value Problems of the Singular Fractional Differential Equations

  • Liu, Yuji;Shi, Haiping;Liu, Xingyuan
    • Kyungpook Mathematical Journal
    • /
    • v.53 no.2
    • /
    • pp.257-271
    • /
    • 2013
  • In this article, we establish the existence of at least three unbounded positive solutions to a boundary-value problem of the nonlinear singular fractional differential equation. Our analysis relies on the well known fixed point theorems in the cones.

DISCRETE EVOLUTION EQUATIONS ON NETWORKS AND A UNIQUE IDENTIFIABILITY OF THEIR WEIGHTS

  • Chung, Soon-Yeong
    • Journal of the Korean Mathematical Society
    • /
    • v.53 no.5
    • /
    • pp.1133-1148
    • /
    • 2016
  • In this paper, we first discuss a representation of solutions to the initial value problem and the initial-boundary value problem for discrete evolution equations $${\sum\limits^l_{n=0}}c_n{\partial}^n_tu(x,t)-{\rho}(x){\Delta}_{\omega}u(x,t)=H(x,t)$$, defined on networks, i.e. on weighted graphs. Secondly, we show that the weight of each link of networks can be uniquely identified by using their Dirichlet data and Neumann data on the boundary, under a monotonicity condition on their weights.

FIXED-POINT THEOREMS FOR (𝜙, 𝜓, 𝛽)-GERAGHTY CONTRACTION TYPE MAPPINGS IN PARTIALLY ORDERED FUZZY METRIC SPACES WITH APPLICATIONS

  • Goswami, Nilakshi;Patir, Bijoy
    • Korean Journal of Mathematics
    • /
    • v.30 no.2
    • /
    • pp.375-389
    • /
    • 2022
  • In this paper, we prove some fixed-point theorems in partially ordered fuzzy metric spaces for (𝜙, 𝜓, 𝛽)-Geraghty contraction type mappings which are generalization of mappings with Geraghty contraction type condition. Application of the derived results are shown in proving the existence of unique solution to some boundary value problems.

POSITIVE SOLUTIONS FOR A SYSTEM OF SINGULAR SECOND ORDER NONLOCAL BOUNDARY VALUE PROBLEMS

  • Asif, Naseer Ahmad;Eloe, Paul W.;Khan, Rahmat Ali
    • Journal of the Korean Mathematical Society
    • /
    • v.47 no.5
    • /
    • pp.985-1000
    • /
    • 2010
  • Sufficient conditions for the existence of positive solutions for a coupled system of nonlinear nonlocal boundary value problems of the type -x"(t) = f(t, y(t)), t $\in$ (0, 1), -y"(t) = g(t, x(t)), t $\in$ (0, 1), x(0) = y(0) = 0, x(1) = ${\alpha}x(\eta)$, y(1) = ${\alpha}y(\eta)$, are obtained. The nonlinearities f, g : (0,1) $\times$ (0, $\infty$ ) $\rightarrow$ (0, $\infty$) are continuous and may be singular at t = 0, t = 1, x = 0, or y = 0. The parameters $\eta$, $\alpha$, satisfy ${\eta}\;{\in}\;$ (0,1), 0 < $\alpha$ < $1/{\eta}$. An example is provided to illustrate the results.

POSITIVE SOLUTIONS FOR NONLINEAR m-POINT BVP WITH SIGN CHANGING NONLINEARITY ON TIME SCALES

  • HAN, WEI;REN, DENGYUN
    • Journal of applied mathematics & informatics
    • /
    • v.35 no.5_6
    • /
    • pp.551-563
    • /
    • 2017
  • In this paper, by using fixed point theorems in cones, the existence of positive solutions is considered for nonlinear m-point boundary value problem for the following second-order dynamic equations on time scales $$u^{{\Delta}{\nabla}}(t)+a(t)f(t,u(t))=0,\;t{\in}(0,T),\;{\beta}u(0)-{\gamma}u^{\Delta}(0)=0,\;u(T)={\sum_{i=1}^{m-2}}\;a_iu({\xi}_i),\;m{\geq}3$$, where $a(t){\in}C_{ld}((0,T),\;[0,+{\infty}))$, $f{\in}C([0,T]{\times}[0,+{\infty}),\;(-{\infty},+{\infty}))$, the nonlinear term f is allowed to change sign. We obtain several existence theorems of positive solutions for the above boundary value problems. In particular, our criteria generalize and improve some known results [15] and the obtained conditions are different from related literature [14]. As an application, an example to demonstrate our results is given.

SOLVING SINGULAR NONLINEAR TWO-POINT BOUNDARY VALUE PROBLEMS IN THE REPRODUCING KERNEL SPACE

  • Geng, Fazhan;Cui, Minggen
    • Journal of the Korean Mathematical Society
    • /
    • v.45 no.3
    • /
    • pp.631-644
    • /
    • 2008
  • In this paper, we present a new method for solving a nonlinear two-point boundary value problem with finitely many singularities. Its exact solution is represented in the form of series in the reproducing kernel space. In the mean time, the n-term approximation $u_n(x)$ to the exact solution u(x) is obtained and is proved to converge to the exact solution. Some numerical examples are studied to demonstrate the accuracy of the present method. Results obtained by the method are compared with the exact solution of each example and are found to be in good agreement with each other.

NONTRIVIAL SOLUTIONS FOR BOUNDARY-VALUE PROBLEMS OF NONLINEAR FRACTIONAL DIFFERENTIAL EQUATIONS

  • Guo, Yingxin
    • Bulletin of the Korean Mathematical Society
    • /
    • v.47 no.1
    • /
    • pp.81-87
    • /
    • 2010
  • In this paper, we consider the existence of nontrivial solutions for the nonlinear fractional differential equation boundary-value problem(BVP) $-D_0^{\alpha}+u(t)=\lambda[f(t, u(t))+q(t)]$, 0 < t < 1 u(0) = u(1) = 0, where $\lambda$ > 0 is a parameter, 1 < $\alpha$ $\leq$ 2, $D_{0+}^{\alpha}$ is the standard Riemann-Liouville differentiation, f : [0, 1] ${\times}{\mathbb{R}}{\rightarrow}{\mathbb{R}}$ is continuous, and q(t) : (0, 1) $\rightarrow$ [0, $+\infty$] is Lebesgue integrable. We obtain serval sufficient conditions of the existence and uniqueness of nontrivial solution of BVP when $\lambda$ in some interval. Our approach is based on Leray-Schauder nonlinear alternative. Particularly, we do not use the nonnegative assumption and monotonicity which was essential for the technique used in almost all existed literature on f.

SOLUTIONS FOR A CLASS OF FRACTIONAL BOUNDARY VALUE PROBLEM WITH MIXED NONLINEARITIES

  • Zhang, Ziheng
    • Bulletin of the Korean Mathematical Society
    • /
    • v.53 no.5
    • /
    • pp.1585-1596
    • /
    • 2016
  • In this paper we investigate the existence of nontrivial solutions for the following fractional boundary value problem (FBVP) $$\{_tD_T^{\alpha}(_0D_t^{\alpha}u(t))={\nabla}W(t,u(t)),\;t{\in}[0,T],\\u(0)=u(T)=0,$$ where ${\alpha}{\in}(1/2,1)$, $u{\in}{\mathbb{R}}^n$, $W{\in}C^1([0,T]{\times}{\mathbb{R}}^n,{\mathbb{R}})$ and ${\nabla}W(t,u)$ is the gradient of W(t, u) at u. The novelty of this paper is that, when the nonlinearity W(t, u) involves a combination of superquadratic and subquadratic terms, under some suitable assumptions we show that (FBVP) possesses at least two nontrivial solutions. Recent results in the literature are generalized and significantly improved.