Browse > Article
http://dx.doi.org/10.4134/JKMS.j150449

DISCRETE EVOLUTION EQUATIONS ON NETWORKS AND A UNIQUE IDENTIFIABILITY OF THEIR WEIGHTS  

Chung, Soon-Yeong (Department of Mathematics and the Program of Integrated Biotechnology Sogang University)
Publication Information
Journal of the Korean Mathematical Society / v.53, no.5, 2016 , pp. 1133-1148 More about this Journal
Abstract
In this paper, we first discuss a representation of solutions to the initial value problem and the initial-boundary value problem for discrete evolution equations $${\sum\limits^l_{n=0}}c_n{\partial}^n_tu(x,t)-{\rho}(x){\Delta}_{\omega}u(x,t)=H(x,t)$$, defined on networks, i.e. on weighted graphs. Secondly, we show that the weight of each link of networks can be uniquely identified by using their Dirichlet data and Neumann data on the boundary, under a monotonicity condition on their weights.
Keywords
discrete Laplacian; evolution equations; inverse problems;
Citations & Related Records
연도 인용수 순위
  • Reference
1 G. Alessandrini, Remark on a paper by H. Bellout and A. Friedman, Boll. Un. Mat. Ital. A (7)3 (1989), 243-249.
2 E. Bendito, A. Carmona, and A. M. Encinas, Potential theory for Schrodinger operators on finite networks, Rev. Mat. Iberoamericana 21 (2005), no. 3, 771-813.
3 E. Bendito, A. Carmona, A. M. Encinas, and J. M. Gesto, Potential theory for boundary value problems on finite networks, Appl. Anal. Discrete Math. 1 (2007), no. 1, 299-310.   DOI
4 F. R. K. Chung, Spectral Graph Theory, CBMS Regional Conference Series in Math., vol. 92, Amer. Math. Soc., 1997.
5 F. R. K. Chung and S.-T. Yau, Discrete Green's functions, J. Combin. Theory Ser. A 91 (2000), no. 1-2, 191-214.   DOI
6 S.-Y. Chung and C. A. Berenstein, $\omega$-harmonic functions and inverse conductivity problems on networks, SIAM J. Appl. Math. 65 (2005), no. 4, 1200-1226.   DOI
7 S.-Y. Chung, Y.-S. Chung, and J.-H. Kim, Diffusion and elastic equations on networks, Publ. Res. Inst. Math. Sci. 43 (2007), no. 3, 699-726.   DOI
8 E. B. Curtis and J. A. Morrow, Determining the resistors in a network, SIAM J. Appl. Math. 50 (1990), no. 3, 918-930.   DOI
9 E. B. Curtis and J. A. Morrow, The Dirichlet to Neumann map for a resistor network, SIAM J. Appl. Math. 51 (1991), no. 4, 1011-1029.   DOI
10 D. Ingerman and J. A. Morrow, On a characterization of the kernel of the Dirichlet-to-Neumann map for a planar region, SIAM J. Math. Anal. 29 (1998), no. 1, 106-115.   DOI
11 V. Isakov, Inverse Problems for Partial Differential Equations, Applied Mathematical Sciences, vol. 127, New York, Springer-Verlag, 1998.
12 J. A. Morrow, D. Ingerman, and E. B. Curtis, Circular planar graphs and resistor networks, Linear Algebra Appl. 283 (1998), no. 1-3, 115-150.   DOI
13 J. A. Morrow, E. Mooers, and E. B. Curtis, Finding the conductors in circular networks from boundary measurements, RAIRO Model. Math. Anal. Numer. 28 (1994), no. 7, 781-814.   DOI
14 J.-H. Park and S.-Y. Chung, Positive solutions for discrete boundary value problems involving the p-Laplacian with potential terms, Comput. Math. Appl. 61 (2011), no. 1, 17-29.   DOI