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SOLUTIONS FOR A CLASS OF FRACTIONAL BOUNDARY

VALUE PROBLEM WITH MIXED NONLINEARITIES

Ziheng Zhang

Abstract. In this paper we investigate the existence of nontrivial solu-
tions for the following fractional boundary value problem

(FBVP)

{

tD
α
T (0Dα

t u(t)) = ∇W (t, u(t)), t ∈ [0, T ],

u(0) = u(T ) = 0,

where α ∈ (1/2, 1), u ∈ R
n, W ∈ C1([0, T ] × R

n,R) and ∇W (t, u) is
the gradient of W (t, u) at u. The novelty of this paper is that, when the
nonlinearity W (t, u) involves a combination of superquadratic and sub-
quadratic terms, under some suitable assumptions we show that (FBVP)
possesses at least two nontrivial solutions. Recent results in the literature
are generalized and significantly improved.

1. Introduction

Fractional order models can be found to be more adequate than integer
order models in some real world problems as fractional derivatives provide an
excellent tool for the description of memory and hereditary properties of various
materials and processes. The mathematical modeling of systems and processes
in the fields of physics, chemistry, aerodynamics, electro dynamics of complex
medium, polymer rheology, etc. involves derivatives of fractional order. As
a consequence, the subject of fractional differential equations is gaining more
importance and attention. There has been significant development in ordinary
and partial differential equations involving both Riemann-Liouville and Caputo
fractional derivatives. For details and examples, one can see the monographs
[2, 6, 11, 13, 14, 16] and the papers [1, 9, 19].

Recently, equations including both left and right fractional derivatives are
discussed. Apart from their possible applications, equations with left and right
derivatives is an interesting and new field in fractional differential equations
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theory. In this topic, many results are obtained dealing with the existence
and multiplicity of solutions of nonlinear fractional differential equations by
using techniques of nonlinear analysis, such as fixed point theory (including
Leray-Schauder nonlinear alternative), topological degree theory (including co-
incidence degree theory) and comparison method (including upper and lower
solutions and monotone iterative method), see [4, 8, 20] and so on.

It should be noted that critical point theory and variational methods have
also turned out to be very effective tools in determining the existence of solu-
tions for integer order differential equations. The idea behind them is trying to
find solutions of a given boundary value problem by looking for critical points
of a suitable energy functional defined on an appropriate function space. In the
last 30 years, the critical point theory has become a wonderful tool in studying
the existence of solutions to differential equations with variational structures,
we refer the reader to the books due to Mawhin and Willem [12], Rabinowitz
[15], Schechter [17] and the references listed therein.

Motivated by the above classical works, in recent paper [10], for the first
time, the authors showed that critical point theory is an effective approach to
deal with the existence of solutions for the following fractional boundary value
problem

(FBVP)

{

tD
α
T (0D

α
t u(t)) = ∇W (t, u(t)), t ∈ [0, T ],

u(0) = u(T ),

where α ∈ (1/2, 1), u ∈ R
n, W ∈ C1([0, T ] × R

n,R) and ∇W (t, u) is the
gradient of W (t, u) at u. Explicitly, under the assumption that

(H1) |W (t, u)| ≤ ā|u|2 + b̄(t)|u|2−τ + c̄(t) for all t ∈ [0, T ] and u ∈ R
n,

where ā∈ [0,Γ2(α+1)/2T 2α), τ ∈ (0, 2), b̄∈L2/τ ([0, T ],R) and c̄∈L1([0, T ],R),
combining with some other reasonable hypotheses on W (t, u), the authors
showed that (FBVP) has at least one nontrivial solution. In addition, assuming
that the potential W (t, u) satisfies the following superquadratic condition:

(H2) there exist µ > 2 and R > 0 such that

0 < µW (t, u) ≤ (∇W (t, u), u)

for all t ∈ [0, T ] and u ∈ R
n with |u| ≥ R,

and some other assumptions on W (t, u), they also obtained the existence of
at least one nontrivial solution for (FBVP). Inspired by this work, in [18] the
author considered the following fractional boundary value problem

(1.1)

{

tD
α
T (0D

α
t u(t)) = f(t, u(t)), t ∈ [0, T ],

u(0) = u(T ) = 0,

with α ∈ (1/2, 1), u ∈ R, f : [0, T ]×R → R satisfying the following hypotheses:

(f1) f ∈ C([0, T ]× R,R);
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(f2) there is a constant µ > 2 such that

0 < µF (t, u) ≤ uf(t, u) for all t ∈ [0, T ] and u ∈ R\{0},

the author showed that (1.1) possesses at least one nontrivial solution via Moun-
tain Pass Theorem.

Note that all the papers mentioned above showed that (FBVP) has at least
one nontrivial solution. As far as the multiplicity of solutions for (FBVP)
is concerned, to the best of our knowledge, only the authors in recent paper
[21], using the genus properties of critical point theory, established some new
criterion to guarantee the existence of infinitely many solutions of (FBVP) for
the case that W (t, u) is subquadratic as |u| → +∞. Explicitly, the potential
W (t, u) is supposed to satisfy the following conditions:

(W1) W (t, 0) = 0 for all t ∈ [0, T ], W (t, u) ≥ a(t)|u|ϑ and |∇W (t, u)| ≤
b(t)|u|ϑ−1 for all (t, u) ∈ [0, T ] × R

n, where 1 < ϑ < 2 is a constant,
a : [0, T ] → R

+ is a continuous function and b : [0, T ] → R
+ is a

continuous function;
(W2) there is a constant 1 < σ ≤ ϑ < 2 such that

(∇W (t, u), u) ≤ σW (t, u) for all t ∈ [0, T ] and u ∈ R
n.

Suppose that (W1) and (W2) are satisfied. Moreover, assuming that W (t, u) is
even in u, i.e.,

(W3) W (t, u) =W (t,−u) for all t ∈ [0, T ] and u ∈ R
n,

then the authors showed that (FBVP) has infinitely many nontrivial solutions.
As is well known, (H2) is the so-called Ambrosetti-Rabinowitz condition

due to Ambrosetti and Rabinowitz (see e.g., [3]), which implies that W (t, u)
is superquadratic as |u| → +∞. On the other hand, from (W1), it is easy to
check that W (t, u) is subquadratic as |u| → +∞. In fact, in view of (W1), we
have

(1.2) W (t, u) =

∫ 1

0

(∇W (t, su), u)ds ≤
b(t)

ϑ
|u|ϑ,

which implies that W (t, u) is of subquadratic growth as |u| → +∞. Therefore,
it is natural to find the existence of solutions for (FBVP) when the potential
W (t, u) is of the form:

W (t, u) =W1(t, u) +W2(t, u),

that is, W (t, u) is a mixed nonlinearity, where W1(t, u) is superquadratic as
|u| → +∞ and W2(t, u) is of subquadratic growth at infinity. To the best our
knowledge, there is no literature to consider the mixed nonlinearity associated
with (FBVP). Motivated by [18] and [21], in the present paper, we focus our
attention on this problem and give some reasonable assumptions on W1(t, u)
and W2(t, u) to guarantee the existence of at least two nontrivial solutions for
(FBVP). For the statement of our main result, the potentialW (t, u) is assumed
to satisfy the following hypothesis:
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(F)1 W1 ∈ C1([0, T ]×R
n,R) and there exists some constant θ > 2 such that

0 < θW1(t, u) ≤ (∇W1(t, u), u) for all t ∈ [0, T ] and u ∈ R
n\{0};

(F)2 there exists a positive continuous function a : [0, T ] → R
+ such that

|∇W1(t, u)| ≤ a(t)|u|θ−1 for all (t, u) ∈ [0, T ]× R
n;

(F)3 W2(t, 0) = 0 for all t ∈ [0, T ],W2 ∈ C1([0, T ]×R
n,R) and there exist a

constant 1 < ̺ < 2 and a positive continuous function b : [0, T ] → R
+

such that

W2(t, u) ≥ b(t)|u|̺

for all (t, u) ∈ [0, T ]× R
n;

(F)4 for all t ∈ [0, T ] and u ∈ R
n,

|∇W2(t, u)| ≤ c(t)|u|̺−1,

where c : [0, T ] → R
+ is a positive continuous function.

To guarantee the existence of at least two nontrivial solutions of (FBVP),
we also need the following estimation on a and c:

(F)5

(

2c̄C̺
̺

̺
θ−̺
θ−2

)θ−2

<
(

θ
2āCθ

θ

2−̺
θ−̺

)2−̺

, where

ā = max
t∈[0,T ]

a(t), c̄ = max
t∈[0,T ]

c(t),

θ > 2 and 1 < ̺ < 2 are defined in (F)1 and (F)3, respectively, C̺ and
Cθ are defined in (2.4) below.

Now we are in the position to state our main result.

Theorem 1.1. If (F)1-(F)5 are satisfied, then (FBVP) possesses at least two

nontrivial solutions.

Remark 1.2. In view of (F)1, we deduce that (see [7, Fact 2.1])

(1.3) W1(t, u) ≤W1

(

t,
u

|u|

)

|u|θ for t ∈ [0, T ] and 0 < |u| ≤ 1

and

(1.4) W1(t, u) ≥W1

(

t,
u

|u|

)

|u|θ for t ∈ [0, T ] and |u| ≥ 1.

Moreover, according to (F)3 and (F)4, it is obvious that

(1.5) W2(t, u) ≤
c(t)

̺
|u|̺ for all t ∈ [0, T ] and u ∈ R

n.

In addition, from (F)1-(F)4, it is easy to obtain that
(1.6)

W (t, u) =

∫ 1

0

(∇W (t, su), u)ds ≤
a(t)

θ
|u|θ +

c(t)

̺
|u|̺

≤
ā

θ
|u|θ +

c̄

̺
|u|̺ =: d1|u|

θ + d2|u|
̺ for all t ∈ [0, T ] and u ∈ R

n.
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Although, the assumption (F)5 looks some cumbersome, it plays an essential
role in checking the Mountain Pass Theorem, see Step 2 in Section 3. In
addition, we must point pout that the assumption (F)5 is only used in Step 2
in the proof of Theorem 1.1 and is easy to be verified. In what follows, for the
reader’s convenience, we present one example to illustrate our main result. Let

W (t, u) =
a(t)

3
|u|3 +

2c(t)

3
|u|

3

2 ,

where a, c : [0, T ] → R
+ are positive continuous functions, then it is easy to

check that W (t, u) satisfies (F)1-(F)4. Meanwhile, the additional assumption

2c̄C̺
̺

√

3āCθ
θ < 1 is sufficient to guarantee that (F)5 holds with θ = 3 and

̺ = 3
2 .

Here we must point out that, in our Theorem 1.1, for the first time we obtain
that (FBVP) has at least two nontrivial solutions for the case that W (t, u) is a
mixed nonlinearity. Therefore, the previous results [10, 18, 21] are generalized
and improved significantly. However, we do not know whether (FBVP) also
possesses infinitely solutions if the potential W (t, u) is even with respect to u
as usual.

The remaining part of this paper is organized as follows. Some preliminary
results are presented in Section 2. In Section 3, we are devoted to accomplishing
the proof of Theorem 1.1.

2. Preliminary results

2.1. Fractional calculus

In this subsection, for the reader’s convenience, we introduce some basic
definitions of fractional calculus which are used further in this paper, see [11].

Definition 2.1 (Left and Right Riemann-Liouville fractional integrals). Let u
be a function defined on [a, b]. The left and right Riemann-Liouville fractional
integrals of order α > 0 for function u are defined by

aI
α
t u(t) =

1

Γ(α)

∫ t

a

(t− s)α−1u(s)ds, t ∈ [a, b]

and

tI
α
b u(t) =

1

Γ(α)

∫ b

t

(s− t)α−1u(s)ds, t ∈ [a, b].

Definition 2.2 (Left and Right Riemann-Liouville fractional derivatives). Let
u be a function defined on [a, b]. The left and right Riemann-Liouville fractional
derivatives of order α > 0 for function u denoted by aD

α
t u(t) and tD

α
b u(t),

respectively, are defined by

aD
α
t u(t) =

dn

dtn
aI

n−α
t u(t)
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and

tD
α
b u(t) = (−1)n

dn

dtn
tI

n−α
b u(t),

where t ∈ [a, b], n− 1 ≤ α < n and n ∈ N.

2.2. Fractional derivative spaces

In order to establish the variational structure which enables us to reduce the
existence of solutions for (FBVP) to find critical points of the corresponding
functional, it is necessary to construct appropriate function spaces.

Firstly, we recall some fractional spaces, for more details see [9, 10]. To this
end, denote by Lp([0, T ],Rn) (1 < p < +∞) the Banach spaces of functions on
[0, T ] with values in R

n under the norms

‖u‖p =
(

∫ T

0

|u(t)|pdt
)1/p

,

and L∞([0, T ],Rn) is the Banach space of essentially bounded functions from
[0, T ] into R

n equipped with the norm

‖u‖∞ = ess sup {|u(t)| : t ∈ [0, T ]} .

For 0 < α ≤ 1 and 1 < p < +∞, the fractional derivative space Eα,p
0 is defined

by

Eα,p
0 = {u ∈ Lp([0, T ],Rn) : 0D

α
t u ∈ Lp([0, T ],Rn) and u(0) = u(T ) = 0}

= C∞
0 ([0, T ],Rn)

‖·‖α,p
,

where ‖ · ‖α,p is defined as follows

(2.1) ‖u‖α,p =
(

∫ T

0

|u(t)|pdt+

∫ T

0

|0D
α
t u(t)|

pdt
)1/p

.

Then Eα,p
0 is a reflexive and separable Banach space. Moreover, Eα,p

0 ∈
C([0, T ],Rn), see [10].

Lemma 2.3. Let 0 < α ≤ 1 and 1 < p < +∞. For all u ∈ Eα,p
0 , if α > 1

p
, we

have

0I
α
t (0D

α
t u(t)) = u(t)

and

(2.2) ‖u‖p ≤
Tα

Γ(α+ 1)
‖0D

α
t u‖p.

In addition, if α > 1
p
and 1

p
+ 1

q
= 1, then

‖u‖∞ ≤
Tα− 1

p

Γ(α)((α − 1)q + 1)
1

q

‖0D
α
t u‖p.
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Remark 2.4. According to (2.1) and (2.2), we can consider in Eα,p
0 the following

norm

(2.3) ‖u‖α,p = ‖0D
α
t u‖p,

which is equivalent to (2.1).

In what follows we denote by Eα = Eα,2
0 . Then it is a Hilbert space with

respect to the norm ‖u‖α,2 given by (2.3). Moreover, from Lemma 2.3 and
Remark 2.4, we have

Proposition 2.5. Let α ∈ (1/2, 1). Then, for any p ∈ (1,+∞), there exists

some constant Cp > 0 such that

(2.4) ‖u‖p ≤ Cp‖u‖α,2, ∀u ∈ Eα.

To verify that the functional corresponding to (FBVP) satisfies the (PS)
condition, we need the following proposition.

Proposition 2.6. Let 0 < α ≤ 1 and 1 < p < +∞. Assume that α > 1
p
and

uk ⇀ u in Eα,p
0 , then uk → u in C([0, T ],Rn), i.e.,

‖uk − u‖∞ → 0

as k → +∞.

Now we introduce more notations and some necessary definitions. Let B
be a real Banach space, I ∈ C1(B,R) means that I is a continuously Fréchet-
differentiable functional defined on B.

Definition 2.7. I ∈ C1(B,R) is said to satisfy the (PS) condition if any
sequence {uk}k∈N

⊂ B, for which {I(uk)}k∈N
is bounded and I ′(uk) → 0 as

k → +∞, possesses a convergent subsequence in B.

Moreover, let Br be the open ball in B with the radius r and centered at
0 and ∂Br denotes its boundary. Under the conditions of Theorem 1.1, we
obtain the existence of the first solution of (FBVP) by using of the following
well-known Mountain Pass Theorem, see [15].

Lemma 2.8 ([15, Theorem 2.2]). Let B be a real Banach space and I ∈
C1(B,R) satisfying the (PS) condition. Suppose that I(0) = 0 and

(A1) there are constants ρ, η > 0 such that I|∂Bρ ≥ η, and

(A2) there is an e ∈ B \Bρ such that I(e) ≤ 0.

Then I possesses a critical value c ≥ η. Moreover c can be characterized as

c = inf
g∈Γ

max
s∈[0,1]

I(g(s)),

where

Γ = {g ∈ C([0, 1],B) : g(0) = 0, g(1) = e} .

As far as the second one is concerned, we obtain it by minimizing method,
which is contained in a small ball centered at 0, see Step 4 in the proof of
Theorem 1.1.
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3. Proof of Theorem 1.1

The aim of this section is to give the proof of Theorem 1.1. To do this,
we are going to establish the corresponding variational framework of (FBVP).
Define the functional I : B = Eα → R by

(3.1)

I(u) =

∫ T

0

[
1

2
|0D

α
t u(t)|

2 −W (t, u(t))]dt

=
1

2
‖u‖2α,2 −

∫ T

0

W (t, u(t))dt.

Lemma 3.1 ([10, Corollary 3.1]). Under the conditions of Theorem 1.1, I
is a continuously Fréchet-differentiable functional defined on Eα, i.e., I ∈
C1(Eα,R). Moreover, we have

I ′(u)v =

∫ T

0

[(0D
α
t u(t), 0D

α
t v(t))− (∇W (t, u(t)), v(t))]dt

for all u, v ∈ Eα, which yields that

(3.2)

I ′(u)u =

∫ T

0

|0D
α
t u(t)|

2dt−

∫ T

0

(∇W (t, u(t)), u(t))dt

= ‖u‖2α,2 −

∫ T

0

(∇W (t, u(t)), u(t))dt.

Furthermore, any critical point of I is a weak solution of (FBVP).

In order to check that the corresponding functional I satisfies the condition
(A1) of Lemma 2.8, the following lemma plays an essential role.

Lemma 3.2. Let 1 < ̺ < 2 < θ, A,B > 0, and consider the function

ΦA,B(t) := t2 −At̺ −Btθ, t ≥ 0.

Then maxt≥0 ΦA,B(t) > 0 if and only if

Aθ−2B2−̺ < d(̺, θ) :=
(θ − 2)θ−2(2− ̺)2−̺

(θ − ̺)θ−̺
.

Furthermore, for t = tB := [(2− ̺)/B(θ − ̺)]1/(θ−2), one has

(3.3) max
t≥0

ΦA,B(t) = ΦA,B(tB) = t2B

[θ − 2

θ − ̺
−AB

2−̺
θ−2

(θ − ̺

2− ̺

)

2−̺
θ−2

]

> 0.

Proof. The proof is essentially the same as that in [5, Lemma 3.2], so we omit
its details. �

In what follows, we verify that I satisfies the (PS) condition.

Lemma 3.3. If (F)1-(F)4 hold, then I satisfies the (PS) condition.
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Proof. Assume that {uk}k∈N
⊂ Eα is a sequence such that {I(uk)}k∈N

is
bounded and I ′(uk) → 0 as k → +∞. Then there exists a constant M > 0
such that

(3.4) |I(uk)| ≤M and ‖I ′(uk)‖(Eα)∗ ≤M

for every k ∈ N, where (Eα)∗ is the dual space of Eα.
We firstly prove that {uk}k∈N

is bounded in Eα. From (3.1), (3.2), (1.5),
(F)1, (F)3, (F)4 and Proposition 2.5, we obtain that
(3.5)

M +
M

θ
‖uk‖ ≥ I(uk)−

1

θ
I ′(uk)uk

=
(1

2
−
1

θ

)

‖uk‖
2
α,2−

∫ T

0

[W (t, uk(t))−
1

θ
(∇W (t, uk(t)), uk(t))]dt

≥
(1

2
−
1

θ

)

‖uk‖
2
α,2−

(

d2 +
c̄

θ

)

‖uk‖
̺
̺

≥
(1

2
−
1

θ

)

‖uk‖
2
α,2−C

̺
̺

(

d2 +
c̄

θ

)

‖uk‖
̺
α,2.

Since 1 < ̺ < 2, the boundedness of {uk}k∈N
in Eα follows directly. Then

the sequence {uk}k∈N
has a subsequence, again denoted by {uk}k∈N

, and there
exists u ∈ Eα such that

uk ⇀ u weakly in Eα,

which yields that

(3.6) (I ′(uk)− I ′(u))(uk − u) → 0.

Moreover, due to the fact thatW ∈ C1([0, T ]×R
n,R), according to Proposition

2.6, we have

(3.7)

∫ T

0

(∇W (t, uk(t))−∇W (t, u(t)), uk(t)− u(t))dt → 0

as k → +∞. Consequently, combining (3.6), (3.7) with the following equality

(I ′(uk)− I ′(u))(uk − u)

= ‖uk − u‖2α,2 −

∫ T

0

(∇W (t, uk(t))−∇W (t, u(t)), uk(t)− u(t))dt,

we deduce that ‖uk − u‖α,2 → 0 as k → +∞. That is, I satisfies the (PS)
condition. �

Now we are in the position to complete the proof of Theorem 1.1. For illumining
the ideas, we divide its proof into four steps.

Proof. Step 1. It is clear that I(0) = 0 and I ∈ C1(Eα,R) satisfies the (PS)
condition by Lemma 3.3.
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Step 2. To show that there exist constants ρ > 0 and η > 0 such that I
satisfies I|∂Bρ ≥ η > 0, that is, the condition (A1) of Lemma 2.8 holds. To this
end, in view of (1.6), we have

(3.8)

∫ T

0

W (t, u)dt ≤ d1

∫ T

0

|u|θdt+ d2

∫ T

0

|u|̺dt

= d1‖u‖
θ
θ + d2‖u‖

̺
̺,

which, combining with (2.4), yields that

(3.9)
I(u) =

1

2
‖u‖2α,2 −

∫ T

0

W (t, u)dt

≥
1

2
‖u‖2α,2 − d1C

θ
θ‖u‖

θ
θ − d2C

̺
̺‖u‖

̺
̺ for all u ∈ Eα.

Applying Lemma 3.2 with

A = 2d2C
̺
̺ and B = 2d1C

θ
θ ,

we obtain that

I(u) ≥
1

2
ΦA,B(tB) > 0,

provided that Aθ−2B2−̺ < d(̺, θ), that is, provided that
(2c̄C̺

̺

̺

θ − ̺

θ − 2

)θ−2

<
( θ

2āCθ
θ

2− ̺

θ − ̺

)̺−2

.

Let ρ = tB =
[

2−̺
B(θ−̺)

]
1

θ−2

and η = 1
2ΦA,B(tB), then we have I|∂Bρ ≥ η > 0.

Step 3. To obtain that there exists an e ∈ Eα such that I(e) < 0 with
‖e‖α,2 > ρ, where ρ is defined in Step 2. For this purpose, take ψ ∈ Eα such
that ψ(t) > 0 on some closed subset Ω ⊂ (0, T ). In view of (3.1), (1.4), (F)1
and (F)3, for l ∈ (0,∞) such that |lψ(t)| ≥ 1 for all t ∈ Ω, we deduce that

(3.10)

I(lψ) =
l2

2
‖ψ‖2α,2 −

∫ T

0

W (t, lψ(t))dt

≤
l2

2
‖ψ‖2α,2 −

∫

Ω

W1(t, lψ(t))dt

≤
l2

2
‖ψ‖2α,2 − lθ

∫

Ω

W1

(

t,
ψ(t)

|ψ(t)|

)

|ψ(t)|θdt

≤
l2

2
‖ψ‖2α,2 −mlθ

∫

Ω

|ψ(t)|θdt,

where m = min{W1(t, u) : t ∈ Ω, |u| = 1} (on account of (F)3, it is obvious
that m > 0). Since θ > 2, (3.10) implies that I(lϕ) = I(e) < 0 for some l ≫ 1
with ‖lϕ‖α,2 > ρ, where ρ is defined in Step 2. By Lemma 2.8, I possesses a
critical value c1 ≥ η > 0 given by

c1 = inf
g∈Γ

max
s∈[0,1]

I(g(s)),
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where
Γ = {g ∈ C([0, 1], Eα) : g(0) = 0, g(1) = e} .

Hence there is 0 6= u1 ∈ Eα such that

I(u1) = c1 and I ′(u1) = 0.

That is, the first nontrivial solution of (FBVP) exists.

Step 4 From (3.9), we see that I is bounded from below on Bρ(0). Therefore,
we can denote by

c2 = inf
‖u‖α,2≤ρ

I(u),

where ρ is defined in Step 1. Then there is a minimizing sequence {vk}k∈N ⊂

Bρ(0) such that
I(vk) → c2 and I ′(vk) → 0

as k → ∞. That is, {vk}k∈N is a (PS) sequence. Furthermore, from Lemma
3.3, I satisfies the (PS) condition. Therefore, c2 is one critical value of I. In
what follows, we show that c2 is one nontrivial critical point. For 0 6≡ ϕ ∈ Eα,
according to (F)1 and (F)3, one deduces that,

(3.11)

I(lϕ) =
l2

2
‖ϕ‖2α,2 −

∫ T

0

W (t, lϕ(t))dt

≤
l2

2
‖ϕ‖2α,2 −

∫ T

0

W2(t, lϕ(t))dt

≤
l2

2
‖ϕ‖2α,2 − l̺

∫ T

0

b(t)|ϕ(t)|̺dt, ∀l ∈ (0,+∞).

Since 1 < ̺ < 2, (3.11) implies that I(lϕ) < 0 for l small enough such that
‖lϕ‖α,2 ≤ ρ. Therefore, c2 < 0 < c1. Consequently, there is 0 6= u2 ∈ Eα such
that

I(u2) = c2 and I ′(u2) = 0.

That is, (FBVP) has another nontrivial solution. �
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