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DISCRETE EVOLUTION EQUATIONS ON NETWORKS AND

A UNIQUE IDENTIFIABILITY OF THEIR WEIGHTS

Soon-Yeong Chung

Abstract. In this paper, we first discuss a representation of solutions
to the initial value problem and the initial-boundary value problem for
discrete evolution equations

l∑

n=0

cn∂
n
t u(x, t)− ρ(x)∆ωu(x, t) = H(x, t),

defined on networks, i.e. on weighted graphs. Secondly, we show that the
weight of each link of networks can be uniquely identified by using their
Dirichlet data and Neumann data on the boundary, under a monotonicity
condition on their weights.

1. Introduction

Over recent years, studying the structure of networks has attracted great
attention from many researchers in various fields. Among these studies, solving
forward and inverse problems for equations by means of an elliptic operator,
called an ω-Laplacian ∆ω on networks, which can be interpreted as a diffusion
equation on graphs modeled by electric networks, have been investigated by a
lot of authors, because of their applications to many practical examples such as
identification of conductivity or finding perturbation of electric networks. See,
for example, [4], [5], [8], [9], [10], [12] and [13].

Recently, the author and C. A. Berenstein published a paper [6], which of-
fered another approach, so called the partial differential equations on networks,
on studying inverse problems for the ω-Laplace operator ∆ω on networks. In
their paper, they defined discrete analogues of some notions on vector calculus
such as integration, directional derivative, gradient and so on, and showed that
some fundamental properties on vector calculus, for example Green’s theorem,
are nicely behaved on networks. By using these properties, they proved the
solvability of direct problems such as Dirichlet and Neumann boundary value
problems for the ω-harmonic equations on networks and then, based on the
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results, proved the global uniqueness of the inverse problem for the equation
under the monotonicity condition.

On the other hand, in the paper [7], by using the operators ∂
∂t
−∆ω and ∂2

∂t2
−

∆ω, the author, Y.-S. Chung and J.-H. Kim introduced ω-diffusion equations
and ω-elastic equations, which are mathematical models of flowing heat (or
energy etc.) through a network and vibration of molecules, respectively, and
discussed their direct problems, such as Cauchy problems and Dirichlet bound-
ary value problems.

In this paper, motivated by [6] and [7] we discuss direct and inverse problems
for equations on networks of the type

l
∑

n=0

cn∂
n
t u(x, t)− ρ(x)∆ωu(x, t) = H(x, t), (x, t) ∈ V × [0, T )

where V is the set of vertices of the given network, ρ : V → R and H :
V × [0, T ) → R are given functions, c0, c1, . . . , cn ∈ R are given constants and
u(x, t) is the unknown, which are generalizations of the ω-diffusion equations

and ω-elastic equations on networks. The main concern of this paper is to
solve the Cauchy problems and the Dirichlet boundary problems for the above
equations and, based on these results, to study an inverse conductivity problem
of identifying conductivities on edges of a given network under the monotonicity
condition. This paper is organized as follows. In Chapter 2, we study vector
calculus on networks, by recalling the paper [6]. In Chapter 3, we introduce the
evolution equations on networks, which are generalizations of the ω-diffusion
equations and the ω-elastic equations on networks discussed in the paper [7].
The existence and the uniqueness of the solution of the Cauchy problems and
the Dirichlet boundary value problems for the equations are discussed. Finally
in Section 4, based on the results of these direct problems discussed in Section 3,
the main result of this paper - a global uniqueness of the conductivity on edges
under monotonicity condition - is proved by applying Laplace transform and
a discrete version of Dirichlet principle for a certain type of nonlinear Poisson
equations on networks, called the Schrödinger equations on networks.

2. Preliminaries

By a graph G = G(V,E) we mean a finite set V of vertices with a set E
of two-element subsets of V (whose elements are called edges). A graph G is
said to be simple if it has neither multiple edges nor loops, and G is said to be
connected if for every pair of vertices x and y there exist a sequence of vertices
x = x0 ∼ x1 ∼ x2 ∼ · · · ∼ xn−1 ∼ xn = y where x ∼ y means that two vertices
x and y are connected (adjacent) by an edge in E. A weighted (undirected)
graph is a graph G(V,E) associated with a weight function ω : V ×V → [0,∞)
satisfying

(i) ω(x, y) = ω(y, x), x, y ∈ V,
(ii) ω(x, y) = 0 if and only if {x, y} /∈ E.
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In particular, a weight ω satisfying ω(x, y) = 1, x ∼ y, is called the standard

weight onG. From now on, the term network denotes a finite, connected, simple
and weighted graph. A network S = S(V ′, E′) is said to be a subnetwork of
G(V,E) if V ′ ⊂ V and E′ ⊂ E. If E′ consists of all the edges from E which
connect the vertices of V ′ in its host network G, then S is called an induced

subnetwork. Throughout this paper, all the subnetworks in our concern are
assumed to be induced subnetworks. For a subnetwork S of a network G =
G(V,E), the (vertex) boundary ∂S of S is the set of all vertices z ∈ V not in S
but adjacent to some vertices in S, i.e., ∂S := {z ∈ V | z ∼ y for some y ∈ S}.
Also, by S we denote a network whose vertices and edges are in S and vertices
in ∂S.

The integration of a function f : V → R on a network G = G(V,E) is
defined by

∫

G

f(x) dx
(

or

∫

G

f
)

:=
∑

x∈V

f(x).

For the directional derivative of a function f : V → R to the direction y, we
mean

Dω,yf(x) := [f(y)− f(x)]
√

ω(x, y), x, y ∈ V

and the gradient ∇ω of a function f is defined to be a vector

∇ωf(x) :=
(

Dω,yf(x)
)

y∈V
.

The (outward) normal derivative ∂f
∂ωn

(z) at z ∈ ∂S is defined to be

∂f

∂ωn
(z) :=

∑

y∈S

[f(z)− f(y)]ω(z, y).

The ω-Laplacian ∆ω of a function f : G→ R on a network G is defined by

∆ωf(x) := −
∑

y∈V

Dω,y (Dω,yf(x)) =
∑

y∈V

[f(y)− f(x)]ω(x, y), x ∈ V.

Remark 2.1. From now on, it is assumed that for each z1 and z2 in ∂S,
ω(z1, z2) = 0, which means that every pair of vertices in the boundary does
not connected by an edge.

The next theorem can be proved easily by following the proof of Theorem
1.2 and Corollary 1.3 in the paper [6] by S.-Y. Chung and C. A. Berenstein.

Theorem 2.2. Let S be a subnetwork of a host network G. Then for any pair

of functions f : S → R and h : S → R, we have

(i)

2

∫

S

h(−∆ωf) =

∫

S

∇ωh · ∇ωf,

(ii)
∫

S

h∆ωf =

∫

S

f∆ωh.
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3. Evolution equations on networks and its direct problems

Let a network G = G(V,E) and a weight ω be given. Consider a function
u : V × [0, T ) → R, where u(x, t) represents the temperature at each vertex
x ∈ V at time t ∈ [0, T ), where T is a positive real number or infinity. Assume
that heat flows from a vertex x to its adjacent vertex y through edges. Then
the velocity of flowing heat from x to y is proportional to (i) the difference of
the temperature of two vertices x and y and (ii) the heat conductivity ω(x, y)
of the edge between x and y. Thus it is easy to see that the function u satisfy
the equation

∂tu(x, t) =
∑

y∈V

[u(y, t)− u(x, t)]ω(x, y), (x, t) ∈ V × [0, T ),

or equivalently,

(3.1) ∂tu(x, t)−∆ωu(x, t) = 0, (x, t) ∈ V × [0, T ).

In this paper, as a generalization of the equation (3.1), we deal with the
following type of evolution equations

l
∑

n=0

cn∂
n
t u(x, t)− ρ(x)∆ωu(x, t) = H(x, t), (x, t) ∈ V × [0, T ),

where c0, c1, . . . , cl be given real constants and ρ(x) and H(x, t) be given func-
tions.

In what follows, T always denotes a given positive number or infinity. For a
network G(V,E) and an interval I ⊂ R, we say that a function f : V × I → R

belongs to Cn(V × I) if for each x ∈ V , the function f(x, ·) is a Cn-function on
I.

We now discuss the existence and the uniqueness of the Cauchy problems
for the evolution equations. For a function f : V → R, with |V | = N , we may
consider it as an N -dimensional vector. By the same sense, the ω-Laplacian
operator ∆ω also can be considered as a matrix defined by

∆ω(x, y) =

{

−dωx, if x = y
ω(x, y), otherwise.

For a given positive valued function ρ : V → (0,∞), letDρ denotes the diagonal
matrix with (x, x)-th entry having the value ρ(x) for each x ∈ V and define

Lρ,ω :=
(

D
1/2
ρ

)

∆ω

(

D
1/2
ρ

)

. Then it is easy to see that,

Lρ,ωf(x) =
√

ρ(x)
∑

y∈V

[

√

ρ(y)f(y)−
√

ρ(x)f(x)
]

ω(x, y), x ∈ V.

Moreover, −Lρ,ω is a nonnegative definite symmetric matrix, so that it has the
eigenvalues 0 ≤ λ0 ≤ λ1 ≤ λ2 ≤ · · · ≤ λN−1, and corresponding eigenfunctions
Φ0,Φ1,Φ2, . . . ,ΦN−1, which are orthonormal in the sense that for each pair
of distinct i and j,

∫

V
Φi(x)Φj(x)dx = 0, while, for all j,

∫

V
|Φj(x)|2dx = 1.

Moreover, it is easy to show that λ0 = 0 and λ1 > 0.



EVOLUTION EQUATIONS ON NETWORKS 1137

Theorem 3.1. Let G(V,E) be a network with a weight ω, ρ be a positive

valued function defined in V and constants c0, c1, . . . , cl ∈ R be given, where

at least one of cj among j = 1, 2, . . . , l is not zero. For given functions H ∈
C
(

V × [0, T )
)

and fn : V → R, n = 0, 1, . . . , l−1, the following Cauchy problem

for the evolution equation

(3.2)

{
(
∑l

n=0 cn∂
n
t − ρ(x)∆ω

)

u(x, t) = H(x, t), (x, t) ∈ V × (0, T ),
∂nt u(x, 0) = fn(x), n = 0, 1, . . . , l − 1, x ∈ V

has a unique solution in Cl−1
(

V × [0, T )
)

represented by using the eigenvalues

λ0 ≤ λ1 ≤ · · ·λ|V |−1 of Lρ,ω and their corresponding orthonormal eigenfunc-

tions Φ0,Φ1, . . . ,Φ|V |−1 as

(3.3) u(x, t) =
√

ρ(x)

|V |−1
∑

j=0

aj(t)Φj(x), (x, t) ∈ V × [0, T )

where aj(t) is the solution in Cl−1[0, T ) of the following initial value problem

l
∑

n=0

cna
(n)
j (t) + λjaj(t) =

∫

G

1
√

ρ(y)
H(y, t)Φj(y)dy, t ∈ [0, T ),(3.4)

a
(n)
j (0) =

∫

G

1
√

ρ(y)
fn(y)Φj(y)dy, n = 0, 1, . . . , l − 1,

for each j = 0, 1, . . . , |V | − 1.

Proof. Let N denote |V |. Suppose that the equation (3.2) has a solution u(x, t)
∈ Cl−1

(

V × [0, T )
)

. Consider the following expansion

1
√

ρ(x)
u(x, t) =

N−1
∑

j=0

aj(t)Φj(x), (x, t) ∈ V × (0, T ),

where aj(t) =
∫

G
D

−1/2
ρ u(y, t) Φj(y)dy, j = 0, 1, . . . , N−1. Since Lρ,ω D

−1/2
ρ =

D
1/2
ρ ∆ω, we have for t ∈ (0, T ),

−λjaj(t) =

∫

G

D−1/2
ρ u(y, t) Lρ,ωΦj(y)dy

=

∫

G

D1/2
ρ ∆ωu(y, t) Φj(y)dy

=
l
∑

n=1

cna
(n)
j (t)−

∫

G

1
√

ρ(y)
H(y, t) Φj(y)dy.

Therefore if (x, t) ∈ V × (0, T ), then u(x, t) satisfies

(3.5) u(x, t) =
√

ρ(x)
N−1
∑

j=0

aj(t)Φj(x), (x, t) ∈ V × (0, T )
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where aj(t) is a solution of the equation

l
∑

n=0

cna
(n)
j (t) + λjaj(t) =

∫

G

1
√

ρ(y)
H(y, t)Φj(y)dy, t ∈ (0, T ),

for each j = 0, 1, . . . , N−1.We now extend the domain of u(x, t) in (3.5) to V ×
[0, T ) continuously. Take any n = 0, 1, . . . , l− 1. Since u(x, ·) ∈ Cl−1[0, T ), x ∈
V, we have

fn(x) = ∂nt u(x, 0) = lim
t→0

√

ρ(x)

N−1
∑

j=0

a
(n)
j (t)Φj(x)

and hence for each j = 0, 1, . . . , N − 1, we obtain

∫

G

1
√

ρ(y)
fn(y)Φj(y)dy = lim

t→0
a
(n)
k (t)

N−1
∑

k=0

∫

G

Φk(y)Φj(y)dy = lim
t→0

a
(n)
j (t).

Thus, we finally conclude that for each (x, t) ∈ V × [0, T ), u(x, t) satisfies (3.3),
where aj(t) is the (unique) solution in Cl−1[0, T ) of the initial value problem
(3.4), for each j = 0, 1, . . . , N − 1. Now, it is easy to verify by substitution that
such u(x, t) is the solution of the equation (3.2). �

Let us now turn to the boundary value problems. For a subnetwork S of a
networkG with a weight ω and for a given function ρ : S → (0,∞), the Dirichlet

eigenvalues of −Lρ,ω = −
(

D
1/2
ρ

)

∆ω

(

D
1/2
ρ

)

are defined to be the eigenvalues
ν1 ≤ ν2 ≤ · · · ≤ νn of the matrix −Lρ,ω,S where Lρ,ω,S is a submatrix of Lρ,ω

with rows and columns restricted to those indexed by vertices in S and n = |S|.
It is well known that there is an eigenfunctions φ1, φ2, . . . , φn corresponding to
ν1, ν2, . . . , νn which are orthonormal in the sense that for each pair of distinct
i and j,

∫

S
φi(x) · φj(x)dx = 0, while, for all j,

∫

S
|φj(x)|2dx = 1. As usual, it

is easy to show that the first eigenvalue ν1 > 0.
We are now ready to solve the Dirichlet boundary value problems of the

evolution equations on networks.

Theorem 3.2. Let S be a subnetwork of a network G with a weight ω with ∂S 6=
∅, ρ be a positive valued function defined in S and constants c0, c1, . . . , cl ∈ R,

where at least one of cj among j = 1, 2, . . . , l is not zero, be given. For σ ∈
C
(

∂S × [0, T )
)

, H ∈ C
(

S × [0, T )
)

and fn : S → R, n = 0, 1, . . . , l − 1, the
following Dirichlet boundary value problem for the evolution equation

(3.6)







(
∑l

n=0 cn∂
n
t − ρ(x)∆ω

)

u(x, t) = H(x, t), (x, t) ∈ S × (0, T )
u(z, t) = σ(z, t), (z, t) ∈ ∂S × [0, T )
∂nt u(x, 0) = fn(x), n = 0, 1, . . . , l− 1, x ∈ S

has a unique solution in Cl−1(S × [0, T )) represented by using the Dirichlet

eigenvalues ν1 ≤ ν2 ≤ · · · ≤ ν|S| of Lρ,ω and their corresponding orthonormal
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eigenfunctions φ1, . . . , φ|S| as

(3.7) u(x, t) =
√

ρ(x)

|S|
∑

j=0

aj(t)φj(x), (x, t) ∈ S × [0, T ),

where aj(t) is the solution in Cl−1[0, T ) of the following initial value problem

l
∑

n=0

cna
(n)
j (t) + λjaj(t) =

∫

S

1
√

ρ(y)

[

Bρ,ω,σ(y, t) +H(y, t)
]

φj(y)dy,

a
(n)
j (0) =

∫

S

1
√

ρ(y)
fn(y)φj(y)dy, n = 0, 1, . . . , l− 1,(3.8)

t ∈ [0,∞), for j = 0, 1, . . . , |S|.
Here, Bρ,ω,σ(y, t) :=

∫

∂S
σ(z, t)ω(y, z)ρ(y)dz.

Proof. Let ˜φj : S → R be the function satisfying ˜φj(x) = φj(x), x ∈ S and
˜φj(x) = 0, x ∈ ∂S. Suppose that the equation (3.6) has a solution u(x, t) ∈
Cl−1

(

S × [0, T )
)

. Consider the following expansion

1
√

ρ(x)
u(x, t) =

|S|
∑

j=0

aj(t)φj(x), (x, t) ∈ S × (0, T ),

where aj(t) =
∫

S
D

−1/2
ρ u(y, t) φj(y)dy, for j = 0, 1, 2, . . . , |S|. Since Lρ,ω D

−1/2
ρ

= D
1/2
ρ ∆ω, we have for t ∈ (0, T ),

−λjaj(t)

=

∫

S

D−1/2
ρ u(y, t) Lρ,ω,Sφj(y)dy

=

∫

S

D−1/2
ρ u(y, t) Lρ,ω

˜φj(y)dy −
∫

∂S

D−1/2
ρ u(z, t) Lρ,ω

˜φj(z)dz

=

∫

S

D1/2
ρ ∆ωu(y, t)φj(y)dy −

∫

S

∫

∂S

σ(z, t)ω(y, z)ρ(y)dz
1

√

ρ(y)
˜φj(y)dy

=

l
∑

n=1

cna
(n)
j (t)−

∫

S

1
√

ρ(y)

[

Bρ,ω,σ(y, t) +H(y, t)
]

φj(y)dy.

Therefore if (x, t) ∈ S × (0, T ), then u(x, t) satisfies

(3.9) u(x, t) =
√

ρ(x)

|S|
∑

j=0

aj(t)φj(x),

where aj(t) is a solution of the equation

l
∑

n=0

cna
(n)
j (t) + λjaj(t) =

∫

S

1
√

ρ(y)

[

Bρ,ω,σ(y, t) +H(y, t)
]

φj(y)dy
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for each j = 0, 1, . . . , |S|. By extending the domain of u(x, t) in (3.9) to S×[0, T )
continuously just as we have done in the proof of Theorem 3.1, we conclude
that for each (x, t) ∈ S×[0, T ), u(x, t) satisfies (3.7), where aj(t) is the (unique)
solution in Cl−1[0, T ) of the initial value problem (3.8), for each j = 0, 1, . . . , |S|.
Now, it is easy to verify by substitution that such u(x, t) is the solution of the
equation (3.6). �

Remark 3.3. In the previous theorems, the function ρ is assumed to be positive
valued. But the condition of ρ can be weaken as ‘ρ(x) 6= 0, for each x’, if we
extend the codomain of all functions in this section to the set of complex
numbers.

The following corollary is a special case of Theorem 3.2.

Corollary 3.4. Let H ∈ C
(

S × [0, T )
)

and σ ∈ C
(

∂S × [0, T )
)

be given the

same as above and f : S → R be a function. The following Dirichlet boundary

value problems for the discrete diffusion equation






∂tu(x, t)−∆ωu(x, t) = H(x, t), (x, t) ∈ S × (0, T ),
u(z, t) = σ(z, t), (z, t) ∈ ∂S × [0, T )
u(x, 0) = f(x), x ∈ S

has a unique solution in C
(

S × [0, T )
)

represented by

u(x, t) =

∫

S

Eω,S(x, y, t) f(y)dy +

∫ t

0

∫

S

Eω,S(x, y, t− τ)
[

Bω,σ(y, τ) +H(y, τ)
]

dy dτ

for (x, t) ∈ S× [0, T ). Here, Eω,S(x, y, t) :=
∑|S|

j=1 e
−νjtφj(x)φj(y), where ν1 ≤

· · · ≤ ν|S| and φ1, . . . , φ|S| are Dirichlet eigenvalues and their corresponding

eigenfunctions of ∆ω, respectively, and Bω,σ(y, t) :=
∫

∂S
σ(y, t)ω(y, z)dy.

Proof. Solve the initial value problem of the ODE (3.8) in Theorem 3.2 with
ρ ≡ 1, l = 1, c0 = 0 and c1 = 1 to get the result. �

4. An inverse conductivity problem

By the direct problems we discussed in the last section, we have for a given
function σ : ∂S → R with σ ∈ Cl−1

(

∂S× [0,∞)
)

, the Dirichlet boundary value
problem for the equation

(4.1)







∑l
n=0 cn∂

n
t u(x, t)− ρ(x)∆ωu(x, t) = 0, (x, t) ∈ S × (0,∞),

u(z, t) = σ(z, t), (z, t) ∈ ∂S × [0,∞)
∂nt u(x, 0) = 0, n = 0, 1, . . . , l − 1, x ∈ S

where c0, c1, . . . , cl ∈ R be given constants, has a unique solution in Cl−1(S ×
[0,∞)). Thus if we give a Dirichlet data σ(z, t) on the boundary of a network,
then the Neumann data ∂u

∂ωn
(z, t) =

∑

y∈S [u(z, t) − u(y, t)]ω(z, y) is uniquely

obtained in Cl−1(S × [0,∞)).
In this section, we discuss an inverse conductivity problem on networks with

nonempty boundary. The main concern is related to the problem of recovering
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the conductivity (or weight) ω of the network by the Neumann data induced by
the Dirichlet data with one boundary measurement. Since, in many practical
examples, we can handle the weight of edges near to the boundary, so it is
natural to assume that u|∂S and ω|∂S×S are given, and ∂u

∂ωn
are known by

measurement.
But even though we are given all these data on the boundary, the uniqueness

of the conductivity ω is still not guaranteed, that means, there can be different
conductivities on edges which induce the same boundary conditions. To avoid
this difficulty and guarantee the uniqueness of the conductivity, we need to
impose some more assumption than u|∂S , ∂u

∂ωn
and ω|∂S×S on the structure of

network, or on the conductivity. We impose the additional constraint so called
the monotonicity condition on conductivity on edges, following the paper [6]
and other literatures in the continuous case such as [1] and [11]. The main
result of this section shows that there is no different conductivities ω1 and
ω2 on edges satisfying ω1 ≤ ω2, in ∂S × S which induce the same boundary
conditions.

In the paper [6], the problem of unique identifiability of conductivity for the
ω-harmonic equations under monotonicity condition was proved by using the
Dirichlet principle for ω-harmonic equations, which characterizes the solutions
of the Dirichlet boundary value problems for ω-harmonic equations as the min-
imizer of an appropriate functional. But it is not easy to apply this method
directly to the problems for the evolution equations of the form (4.1), for it
is not an easy problem to find an appropriate functional whose minimizer is
the solution of the problem (4.1). To overcome this difficulty, we use Laplace
transform to transfer the system (4.1) to the system of the equations of the
following type,

q(x)u(x) −∆ωu(x) = 0, x ∈ V

which are said to be the Schrödinger equations on networks. We first discuss
the Dirichlet boundary value problem of the equations. For a subnetwork S of
a network G with a weight ω and for a given function q : S → R, the Dirichlet

eigenvalues of Dq − ∆ω are defined as the eigenvalues ν1 ≤ ν2 ≤ · · · ≤ ν|S|
of the matrix (Dq − ∆ω)S , which is a submatrix of Dq − ∆ω with rows and
columns restricted to those indexed by vertices in S. Orthonormal functions
φ1, . . . , φ|S| satisfying

(

Dq −∆ω

)

S
φj = νjφj , j = 1, 2, . . . , |S|

are said to be the corresponding orthonormal eigenfunctions of ν1, . . . , ν|S|,
respectively. Note that it is not, in general, true that the operator Dq − ∆ω

is positive definite, and therefore the first eigenvalue ν1 is not always greater
than 0.

We now discuss the existence and the uniqueness of the solutions of the
Dirichlet boundary value problems for the Schrödinger equations on networks.
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Theorem 4.1. Let S be a graph with ∂S 6= ∅ and q : S → R be given. For

σ : ∂S → R and H : S → R, the Dirichlet boundary value problem for the

following Schrödinger equation

(4.2)

{

q(x)u(x) −∆ωu(x) = H(x), x ∈ S,
u(z) = σ(z), z ∈ ∂S.

(i) has a unique solution, if 0 is not a Dirichlet eigenvalue of Dq −∆ω,

(ii) has infinitely many solutions, if 0 is a Dirichlet eigenvalue of Dq −∆ω

and σ satisfies that for each j ∈ A,
∫

S

[

Bω,σ(y) +H(y)
]

φj(y)dy = 0,

(iii) has no solution, if 0 is a Dirichlet eigenvalue of Dq−∆ω and σ satisfies

that there exists j ∈ A such that
∫

S

[

Bω,σ(y) +H(y)
]

φj(y)dy 6= 0,

where φ1, . . . , φ|S| are corresponding orthonormal eigenfunctions of Dirichlet

eigenvalues ν1 ≤ · · · ≤ ν|S| of Dq −∆ω, A := {i ∈ N | νi = 0} and Bω,σ(y) =
∫

∂S
σ(z, t)ω(y, z). Moreover, in the case of (i) we have the following explicit

solution

(4.3) u(x) =

|S|
∑

j=1

1

νj

∫

S

φj(x)φj(y)
[

Bω,σ(y) +H(y)
]

dy,

x ∈ S and in the case of (ii), the solutions are given by

(4.4) u(x) =
∑

j∈A

ajφj +
∑

j∈Ac

1

νj

∫

S

φj(x)φj(y)
[

Bω,σ(y) +H(y)
]

dy,

x ∈ S where aj ∈ R, j ∈ A is chosen arbitrary and Ac denotes the set

{1, 2, . . . , |S|} \A.
Proof. Let ˜φj : S → R be the function satisfying ˜φj(x) = φj(x), x ∈ S and
˜φj(x) = 0, x ∈ ∂S, for j = 1, 2, . . . , |S|. Suppose that there exists a solution
u(x) of the equation (4.2) and consider the expansion

u(x) =

|S|
∑

j=1

ajφj(x), x ∈ S,

where aj =
∫

S
u(y)φj(y)dy. Then we have

(4.5)

νjaj =

∫

S

u(y)
(

Dq −∆ω

)

˜φj(y)dy −
∫

∂S

u(z)
(

Dq −∆ω

)

˜φj(z)dz

=

∫

S

(

Dq −∆ω

)

u(y)φj(y)dy +

∫

S

[

∫

∂S

σ(z)ω(y, z)dz
]

φj(y)dy

=

∫

S

[

Bω,σ(y) +H(y)
]

φj(y)dy
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for j = 1, 2, . . . , |S|. From (4.5), the case (iii) is proved immediately and in the
cases of (i) and (ii), we have if νj 6= 0, then

aj =
1

νj

∫

S

[

Bω,σ(y) +H(y)
]

φj(y)dy

and if νj = 0, then aj can be chosen arbitrary. Now it is a simple calculation
to verify (4.3) and (4.4) are solutions of the equation (4.2) in the cases of (i)
and (ii), respectively. �

Note that the previous theorem guarantees the existence and the uniqueness
of the solution of every equation (4.2) with a nonnegative real-valued function
q (see [14]). Here, we characterize its solution as a minimizer of an appropriate
functional. This characterization can be called the discrete version of Dirichlet

principle for ω-Schrödinger equations on networks.
For a given function q : S → [0,∞), we define a functional Iω,q by

(4.6) Iω,q[v] :=

∫

S

1

4
|∇ωv(x)|2 +

q(x)

2
v2(x) dx

for v : S → R. For a given σ : ∂S → R, we define an admissible set

Aσ = {v : S → R | v(z) = σ(z), z ∈ ∂S}.

Theorem 4.2. Let S be a subnetwork of a network G with a weight ω with

∂S 6= ∅ and functions q : S → [0,∞) and σ : ∂S → R be given. Assume that u
is the solution of the following equation

(4.7)

{

q(x)u(x) −∆ωu(x) = 0, x ∈ S
u(z) = σ(z), z ∈ ∂S.

Then we have,

(4.8) Iω,q[u] = min
v∈Aσ

Iω,q[v].

Conversely, if u ∈ Aσ satisfies (4.8), then u is the solution of the equation

(4.7).

Proof. (⇒) Take any v ∈ Aσ. Since

0 =

∫

S

[

−∆ωu(x) + q(x)u(x)
] [

u(x)− v(x)
]

dx

=

∫

S

1

2
∇ωu(x) · ∇ω

[

u(x)− v(x)
]

+ q(x)u(x)
[

u(x)− v(x)
]

dx

=
1

2

∫

S

|∇ωu(x)|2 + qu2(x) dx−
∫

S

∇ωu(x) · ∇ωv(x) + quv(x) dx,

we have
∫

S

1

2
|∇ωu(x)|2 + q(x)[u(x)]2 dx
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≤
∫

S

1

4
|∇ωu(x)|2 +

1

4
|∇ωv(x)|2 +

1

2
q(x)[u(x)]2 +

1

2
q(x)[v(x)]2 dx,

by using the inequality |ab| ≤ 1
2 (a

2 + b2), a, b ∈ R. Therefore we finally get the
result.

(⇐) Take any x0 ∈ S and define a continuous function i(τ) := Iω,q[u +

τδx0 ], τ ∈ R, where δx0 is a function on S defined by δx0(x) = 1 if x = x0 and
δx0(x) = 0 otherwise. Then it follows from the fact that u+ τδx0 ∈ Aσ, τ ∈ R

and the assumption (4.8) that i(τ) has a minimum at τ = 0, which implies

(4.9) i′(0) = 0.

Since we have

i(τ) =

∫

S

1

4
|∇ωu(x) + τ∇ωδx0(x)|2 +

t

2

[

u(x) + τδx0(x)
]2
dx

=
1

4

∫

S

|∇ωu(x)|2 + 2τ∇ωu(x) · ∇δx0(x) + τ2|∇ωδx0(x)|2 dx

+
t

2

∫

S

[

u(x)
]2

+ 2τu(x)δx0(x) + τ2[δx0(x)]
2 dx,

it follows from (4.9) that

0 =

∫

S

1

2
∇ωu(x) · ∇ωδx0 + qu(x)δx0(x) dx

=

∫

S

δx0(x)
[

−∆ωu(x) + qu(x)
]

dx

= −∆ωu(x0) + q(x0)u(x0).

Since x0 ∈ S is chosen arbitrarily, we get the result. �

Remark 4.3. On preparing this paper, authors found a paper [2] and a preprint
[3] by Bendito, Carmona, Encinas and Gesto which also deal with the Schröd-
inger equations on networks and generalize Theorem 4.2 to allow more general
conditions on the function q than the condition given in Theorem 4.2.

Now we are in a position to state and to prove the main result of this paper.
In the following theorem, the positive valued function ρ on S and constants
c0, c1, . . . , cl, where at least one of cj among j = 1, 2, . . . , l is not zero, are
assumed to be given.

Theorem 4.4. Let S be a subnetwork of a network G with ∂S 6= ∅ and ω1 and

ω2 be weights on the same network S with ω1(x, y) ≤ ω2(x, y), (x, y) ∈ S × S.

Suppose constants c0, c1, . . . , cn satisfy
∑l

n=0 cnt
n > 0, t ∈ (0,∞). Let uj :

S → R, j = 1, 2 be functions in Cl−1
(

S × [0,∞)
)

satisfying

(4.10)







(
∑l

n=0 cn∂
n
t − ρ(x)∆ωj

)

uj(x, t) = 0, (x, t) ∈ S × (0,∞),
uj(z, t) = σ(z, t), (z, t) ∈ ∂S × [0,∞)
∂nt uj(x, 0) = 0, n = 0, 1, . . . , l, x ∈ S,
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for j = 1, 2. If we assume that

(i) ω1(z, y) = ω2(z, y), (z, y) ∈ ∂S × S,

(ii) ∂u1

∂ω1n
≡ ∂u2

∂ω2n
∈ Cl−1

(

∂S × [0,∞)
)

,

(iii) for each z ∈ ∂S, there exists γ > 0 such that σ(z, t) = O(eγt),

then we have

(i) u1 = u2 on S × [0,∞),
(ii) ω1(x, y) = ω2(x, y) if u(x, t) 6= u(y, t) for some t > 0, where u := u1 =

u2.

Proof. Let ψ : ∂S× [0,∞) → R be the function defined by ψ(z, t) := ∂u1

∂ω1n
(z, t)

= ∂u2

∂ω2n
(z, t), (z, t) ∈ ∂S × [0,∞). By (3.7) and (3.8) in Theorem 3.2 and

the condition of σ in the assumption (iii), it is easy to see that there exist

L > 0 such that u(x, t) = O(eLt), x ∈ S. Now take Laplace transform f̂(s) :=
∫∞
0
f(t)e−stdt with respect to the variable t of the equation (4.10) to get the

following equation

(4.11)

{

ρ−1(x)P (s)ûj(x, s)−∆ωj
ûj(x, s) = 0, (x, s) ∈ S × (L,∞),

ûj(z, s) = σ̂(z, s), (z, s) ∈ ∂S × (L,∞)

for j = 1, 2 with

∂û1
∂ω1n

(z, s) =
∂û2
∂ω2n

(z, s) = ψ̂(z, s), (z, s) ∈ ∂S × (L,∞),

where P (s) =
∑l

n=0 cns
n. For each (fixed) s > L, (4.11) is a Dirichlet boundary

value problem for a Schrödinger equation with q(x) = ρ−1(x)P (s). Note that,
from Remark 2.1 and the coincidence of the Neumann data, we have

(4.12) ∆ω1 û1(z, s) = −ψ̂(z, s) = ∆ω2 û2(z, s), (z, s) ∈ ∂S × (0,∞).

By virtue of the condition ω1 ≤ ω2, we have for each v : S → R,

|∇ω1v(x)|2 =
∑

y∈S

[

v(x) − v(y)
]2
ω1(x, y)(4.13)

≤
∑

y∈S

[

v(x) − v(y)
]2
ω2(x, y) = |∇ω2v(x)|2

for x ∈ S. In what follows, since there is no worry of confusion, the notation
Iω,ρ−1P (s) is denoted by Iω,s for simplicity. It follows from (4.12), (4.13) and
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Theorem 2.2 that for each s > L, we have

Iω1,s[û1(·, s)] =
1

2

∫

S

û1(x, s)
[

−∆ω1 û1(x, s) + ρ−1(x)P (s)U1(x, s)
]

dx

=
1

2

∫

∂S

û2(x, s)
[

−∆ω2 û2(x, s) + ρ−1(x)P (s)U2(x, s)
]

dx

=
1

2

∫

S

û2(x, s)
[

−∆ω2 û2(x, s) + ρ−1(x)P (s)U2(x, s)
]

dx

=

∫

S

1

4
|∇ω2 û2(x, s)|2 +

1

2
ρ−1(x)P (s)

[

û2(x, s)
]2
dx

≥ Iω1,s[û2(·, s)].

(4.14)

Since û2(·, s) ∈ Aσ̂(·,s), s > L, by virtue of Theorem 4.2, we have

û1 ≡ û2 in S × (L,∞).

Let û := û1 = û2 on S × (L,∞). Since a calculation in (4.14) shows

Iω1,s[û(·, s)] = Iω2,s[û(·, s)], s > L,

we have, from an easy calculation, the following

1

4

∑

x∈S

∑

y∈S

[

û(x, s) − û(y, s)
]2[
ω2(x, y)− ω1(x, y)

]

= 0, s > L,

which implies, ω1(x, y) = ω2(x, y) whenever u(x, s) 6= u(y, s), for some s > L.
This completes the proof. �

In the previous theorem, the unique identifiability of the weight ω is guar-
anteed only if for each x ∼ y ∈ S, there exist at least one t > 0 such that
u(x, t) 6= u(y, t). We give an example which illustrates that this condition
should not be omitted.

Consider a network (S,E), S = {x1, x2, x3, x4} with ∂S = {z1, z2} which
are connected by edges as in the Figure 1. Suppose that ω1 is the standard
weight and ω2 is the weight given by ω1 = ω2 except for ω2(x2, x3) = 2 (See
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Figure 1). A calculation shows that the eigenvalues and the eigenfunctions of
the operators ∆ωj

, j = 1, 2 are given by

ν1 =
1

2
(5−

√
17), ν2 = 3, ν3 = 4, ν4 =

1

2
(5 +

√
17),

φ1 =

(

1√
17
4 +

√

17
4

,
1
4+

√

17
4√

17
4 +

√

17
4

,
1
4+

√

17
4√

17
4 +

√

17
4

, 1√
17
4 +

√

17
4

)

,

φ2 =
(

− 1√
2
, 0, 0, 1√

2

)

, φ3 =
(

0,− 1√
2
, 1√

2
, 0
)

,

φ4 =

(

1√
17
4 −

√

17
4

,
1
4−

√

17
4√

17
4 −

√

17
4

,
1
4−

√

17
4√

17
4 −

√

17
4

, 1√
17
4 −

√

17
4

)

,

and

ν1 =
1

2
(5−

√
17), ν2 = 3, ν3 =

1

2
(5 +

√
17), ν4 = 6,

φ1 =

(

1√
17
4 +

√

17
4

,
1
4+

√

17
4√

17
4 +

√

17
4

,
1
4+

√

17
4√

17
4 +

√

17
4

, 1√
17
4 +

√

17
4

)

,

φ2 =
(

− 1√
2
, 0, 0, 1√

2

)

,

φ3 =

(

1√
17
4 −

√

17
4

,
1
4−

√

17
4√

17
4 −

√

17
4

,
1
4−

√

17
4√

17
4 −

√

17
4

, 1√
17
4 −

√

17
4

)

,

φ4 =
(

0,− 1√
2
, 1√

2
, 0
)

,

respectively. Then it follows from the result in Corollary 3.4 with a little
calculation that for any Dirichlet data σ(z, t) ∈ C

(

S × [0,∞)
)

of the following
evolution equations







∂tuj(x, t)−∆ωj
uj(x, t) = 0, (x, t) ∈ S × (0,∞),

uj(z, t) = σ(z, t), (z, t) ∈ ∂S × [0,∞)
uj(x, 0) = 0, x ∈ S,

for j = 1, 2, we have uj(x2, t) = uj(x3, t), t > 0, for j = 1, 2. Now, although

ω1 ≤ ω2, their Neumann data ∂u1

∂ω1n
and ∂u2

∂ω2n
are calculated to be the same as

∂u1

∂ω1n
(z1, t) = −

∫ t

0

(

1
2e

3(t−τ) + e
1
2
(5−

√

17)(t−τ)

17
4 +

√

17
4

+ e
1
2
(5+

√

17)(t−τ)

17
4 −

√

17
4

)

σ(z1, τ)dτ

−
∫ t

0

(

− 1
2e

3(t−τ) + e
1
2
(5−

√

17)(t−τ)

17
4 +

√

17
4

+ e
1
2
(5+

√

17)(t−τ)

17
4 −

√

17
4

)

σ(z2, τ)dτ

+σ(z1, t) =
∂u2

∂ω2n
(z1, t)

and

∂u1

∂ω1n
(z2, t) = −

∫ t

0

(

− 1
2e

3(t−τ) + e
1
2
(5−

√

17)(t−τ)

17
4 +

√

17
4

+ e
1
2
(5+

√

17)(t−τ)

17
4 −

√

17
4

)

σ(z1, τ)dτ

−
∫ t

0

(

1
2e

3(t−τ) + e
1
2
(5−

√

17)(t−τ)

17
4 +

√

17
4

+ e
1
2
(5+

√

17)(t−τ)

17
4 −

√

17
4

)

σ(z2, τ)dτ

+σ(z2, t) =
∂u2

∂ω2n
(z2, t).
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