DOI QR코드

DOI QR Code

FIXED-POINT THEOREMS FOR (𝜙, 𝜓, 𝛽)-GERAGHTY CONTRACTION TYPE MAPPINGS IN PARTIALLY ORDERED FUZZY METRIC SPACES WITH APPLICATIONS

  • Received : 2022.03.24
  • Accepted : 2022.05.22
  • Published : 2022.06.30

Abstract

In this paper, we prove some fixed-point theorems in partially ordered fuzzy metric spaces for (𝜙, 𝜓, 𝛽)-Geraghty contraction type mappings which are generalization of mappings with Geraghty contraction type condition. Application of the derived results are shown in proving the existence of unique solution to some boundary value problems.

Keywords

References

  1. I. Altun, H. Simsek, Some fixed point theorems on ordered metric spaces and application, Fixed Point Theory Appl. 2010 (2010), 1-17.
  2. S. Chandok, Some fixed point theorems for (α, β)-admissible Geraghty type contractive mappings and related results, Math Sci. 9 (2015), 127-135. https://doi.org/10.1007/s40096-015-0159-4
  3. Y. J. Cho, T. M. Rassias, R. Saadati, Fixed Point Theorems in Partially Ordered Fuzzy Metric Spaces, Fuzzy Operator Theory in Mathematical Analysis 2018 (2018), 177-261.
  4. A. George, P. Veeramani, On some results in fuzzy metric spaces, Fuzzy Set Syst. 64 (1994), 395-399. https://doi.org/10.1016/0165-0114(94)90162-7
  5. M. Geraghty: On contractive mappings, Proc. Amer. Math. Soc. 40 (1973), 604-608. https://doi.org/10.1090/S0002-9939-1973-0334176-5
  6. M. E. Gordji, M. Ramezani, Y. J. Cho, S. Pirbavafa, A generalization of Geraghty's theorem in partially ordered metric spaces and applications to ordinary differential equations, Fixed Point Theory Appl. 2012 (2012), 1-74. https://doi.org/10.1186/1687-1812-2012-1
  7. N. Goswami, B. Patir, Fixed point theorems in fuzzy metric spaces for mappings with Bγ, µ condition, Proyecciones 40 (4) (2021), 837-857.
  8. N. Goswami, B. Patir, Some applications of fixed point theorem in fuzzy boundary value problems, Advances in Science and Technology 2 (2020), 108-114.
  9. N. Goswami, B. Patir, Fixed point theorems for asymptotically regular mappings in fuzzy metric spaces, Korean J. Math. 27 (4) (2019), 861-877. https://doi.org/10.11568/kjm.2019.27.4.861
  10. M. Grabiec, Fixed points in fuzzy metric spaces, Fuzzy Set Syst. 27 (1988), 385-389. https://doi.org/10.1016/0165-0114(88)90064-4
  11. V. Gregori, S. Morillas, A. Sapena, Examples of fuzzy metrics and applications, Fuzzy Set Syst. 170 (2011), 95-111. https://doi.org/10.1016/j.fss.2010.10.019
  12. V. Gupta, W. Shatanawi, N. Mani, Fixed point theorems for (ψ, β)-Geraghty contraction type maps in ordered metric spaces and some applications to integral and ordinary differential equations, J. Fixed Point Theory Appl. 19 (2017), 1251-1267. https://doi.org/10.1007/s11784-016-0303-2
  13. A. A. Harandi, H. Emami, A fixed point theorem for contraction type maps in partially ordered metric spaces and application to ordinary different equations, Nonlinear Analysis 72 (2010), 2238-2242. https://doi.org/10.1016/j.na.2009.10.023
  14. J. Harjani, K. Sadarangani, Fixed point theorems for weakly contractive mappings in partially ordered sets, Nonlinear Analysis 71 (2009), 3403-3410. https://doi.org/10.1016/j.na.2009.01.240
  15. N. Mlaiki, U. Celik, N. Tas, N. Y. Ozgur, A. Mukheimer, Wardowski type contractions and the fixed-circle problem on s-metric spaces, J. Math. 2018 (2018), 1-9.
  16. J. J. Nieto, R. R. Lopez, Applications of contractive-like mapping principles to fuzzy equations, Rev. Mat. Complut. 19 (2) (2006), 361-383.
  17. N. Y. Ozgur and N. Tas, Some fixed-circle theorems on metric spaces, Bull. Malays. Math. Sci. Soc. 42 (4) (2019), 1433-1449. https://doi.org/10.1007/s40840-017-0555-z
  18. B. Patir, N. Goswami, L. N. Mishra, Fixed point theorems in fuzzy metric spaces for mappings with some contractive type conditions, Korean J. Math. 26 (2) (2018), 307-326. https://doi.org/10.11568/KJM.2018.26.2.307
  19. Y. Shen, D. Qiu, W. Chen, Fixed point theorems in fuzzy metric spaces, Appl. Math. Lett. 25 (2012), 138-141. https://doi.org/10.1016/j.aml.2011.08.002
  20. R. L. Herman, Introduction to Partial Differential Equations, (2014). http://people.uncw.edu/hermanr/pde1/PDEbook/Green.pdf
  21. L. R. Williams, R. W. Leggett, Multiple fixed point theorems for problems in chemical reactor theory, J. Math. Anal. Appl. 69 (1) (1979), 180-193. https://doi.org/10.1016/0022-247X(79)90187-2