References
- I. Altun, H. Simsek, Some fixed point theorems on ordered metric spaces and application, Fixed Point Theory Appl. 2010 (2010), 1-17.
- S. Chandok, Some fixed point theorems for (α, β)-admissible Geraghty type contractive mappings and related results, Math Sci. 9 (2015), 127-135. https://doi.org/10.1007/s40096-015-0159-4
- Y. J. Cho, T. M. Rassias, R. Saadati, Fixed Point Theorems in Partially Ordered Fuzzy Metric Spaces, Fuzzy Operator Theory in Mathematical Analysis 2018 (2018), 177-261.
- A. George, P. Veeramani, On some results in fuzzy metric spaces, Fuzzy Set Syst. 64 (1994), 395-399. https://doi.org/10.1016/0165-0114(94)90162-7
- M. Geraghty: On contractive mappings, Proc. Amer. Math. Soc. 40 (1973), 604-608. https://doi.org/10.1090/S0002-9939-1973-0334176-5
- M. E. Gordji, M. Ramezani, Y. J. Cho, S. Pirbavafa, A generalization of Geraghty's theorem in partially ordered metric spaces and applications to ordinary differential equations, Fixed Point Theory Appl. 2012 (2012), 1-74. https://doi.org/10.1186/1687-1812-2012-1
- N. Goswami, B. Patir, Fixed point theorems in fuzzy metric spaces for mappings with Bγ, µ condition, Proyecciones 40 (4) (2021), 837-857.
- N. Goswami, B. Patir, Some applications of fixed point theorem in fuzzy boundary value problems, Advances in Science and Technology 2 (2020), 108-114.
- N. Goswami, B. Patir, Fixed point theorems for asymptotically regular mappings in fuzzy metric spaces, Korean J. Math. 27 (4) (2019), 861-877. https://doi.org/10.11568/kjm.2019.27.4.861
- M. Grabiec, Fixed points in fuzzy metric spaces, Fuzzy Set Syst. 27 (1988), 385-389. https://doi.org/10.1016/0165-0114(88)90064-4
- V. Gregori, S. Morillas, A. Sapena, Examples of fuzzy metrics and applications, Fuzzy Set Syst. 170 (2011), 95-111. https://doi.org/10.1016/j.fss.2010.10.019
- V. Gupta, W. Shatanawi, N. Mani, Fixed point theorems for (ψ, β)-Geraghty contraction type maps in ordered metric spaces and some applications to integral and ordinary differential equations, J. Fixed Point Theory Appl. 19 (2017), 1251-1267. https://doi.org/10.1007/s11784-016-0303-2
- A. A. Harandi, H. Emami, A fixed point theorem for contraction type maps in partially ordered metric spaces and application to ordinary different equations, Nonlinear Analysis 72 (2010), 2238-2242. https://doi.org/10.1016/j.na.2009.10.023
- J. Harjani, K. Sadarangani, Fixed point theorems for weakly contractive mappings in partially ordered sets, Nonlinear Analysis 71 (2009), 3403-3410. https://doi.org/10.1016/j.na.2009.01.240
- N. Mlaiki, U. Celik, N. Tas, N. Y. Ozgur, A. Mukheimer, Wardowski type contractions and the fixed-circle problem on s-metric spaces, J. Math. 2018 (2018), 1-9.
- J. J. Nieto, R. R. Lopez, Applications of contractive-like mapping principles to fuzzy equations, Rev. Mat. Complut. 19 (2) (2006), 361-383.
- N. Y. Ozgur and N. Tas, Some fixed-circle theorems on metric spaces, Bull. Malays. Math. Sci. Soc. 42 (4) (2019), 1433-1449. https://doi.org/10.1007/s40840-017-0555-z
- B. Patir, N. Goswami, L. N. Mishra, Fixed point theorems in fuzzy metric spaces for mappings with some contractive type conditions, Korean J. Math. 26 (2) (2018), 307-326. https://doi.org/10.11568/KJM.2018.26.2.307
- Y. Shen, D. Qiu, W. Chen, Fixed point theorems in fuzzy metric spaces, Appl. Math. Lett. 25 (2012), 138-141. https://doi.org/10.1016/j.aml.2011.08.002
- R. L. Herman, Introduction to Partial Differential Equations, (2014). http://people.uncw.edu/hermanr/pde1/PDEbook/Green.pdf
- L. R. Williams, R. W. Leggett, Multiple fixed point theorems for problems in chemical reactor theory, J. Math. Anal. Appl. 69 (1) (1979), 180-193. https://doi.org/10.1016/0022-247X(79)90187-2