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POSITIVE SOLUTIONS FOR NONLINEAR m-POINT BVP

WITH SIGN CHANGING NONLINEARITY ON TIME

SCALES†

WEI HAN∗ AND DENGYUN REN

Abstract. In this paper, by using fixed point theorems in cones, the ex-
istence of positive solutions is considered for nonlinear m-point boundary

value problem for the following second-order dynamic equations on time
scales

u∆∇(t) + a(t)f(t, u(t)) = 0, t ∈ (0, T ),

βu(0)− γu∆(0) = 0, u(T ) =

m−2∑
i=1

aiu(ξi), m ≥ 3,

where a(t) ∈ Cld((0, T ), [0,+∞)), f ∈ C([0, T ] × [0,+∞), (−∞,+∞)),

the nonlinear term f is allowed to change sign. We obtain several existence
theorems of positive solutions for the above boundary value problems. In
particular, our criteria generalize and improve some known results [15] and
the obtained conditions are different from related literature [14]. As an

application, an example to demonstrate our results is given.

AMS Mathematics Subject Classification : 39A10, 34B15, 34B18. Key
words and phrases : Time scale, Positive solutions, Boundary value prob-
lem, Fixed point theorems, Cone.

1. Introduction

A time scale T is a nonempty closed subset of R. We make the blanket
assumption that 0, T are points in T. By an interval (0, T), we always mean
the intersection of the real interval (0, T) with the given time scale, that is (0,
T)∩T.

Received 27 February 2017, Revised 19 July 2017. Accepted July 20, 2017. ∗Corresponding

author.
†This work was supported by the National Natural Science Foundation of China (Grant No.

11301489).

c⃝ 2017 Korean SIGCAM and KSCAM.

551



552 Wei Han and Dengyun Ren

In this paper, we will be concerned with the existence of positive solutions
for the following dynamic equations on time scales:

u∆∇(t) + a(t)f(t, u(t)) = 0, t ∈ (0, T ), (1.1)

βu(0)− γu∆(0) = 0, u(T ) =

m−2∑
i=1

aiu(ξi), m ≥ 3, (1.2)

we will assume that the following conditions are satisfied throughout this paper:

(H1) 0 < ξ1 < · · · < ξm−2 < ρ(T ), β, γ ≥ 0, β + γ > 0, ai ∈ [0,+∞), i =

1, 2, · · · ,m− 3, am−2 > 0, satisfy 0 <
m−2∑
i=1

aiξi < T , and d = β(T −
m−2∑
i=1

aiξi) +

γ(1−
m−2∑
i=1

ai) > 0;

(H2) a(t) ∈ Cld((0, T ), [0,+∞)) and there exists t0 ∈ [ξm−2, T ), such that
a(t0) > 0;

(H3) f ∈ C([0, T ]× [0,+∞), (−∞,+∞)), f(t, 0) ≥ 0 and f(t, 0) ̸= 0. (The
∆-derivative and the ∇-derivative in (1.1), (1.2) and the Cld space in (H2) are
defined in Section 2.)

Recently, there has been much attention paid to the existence of positive
solutions for second-order nonlinear boundary value problems on time scales, for
examples, see [3, 8, 10, 14, 15] and references therein. But to the best of our
knowledge, few people considered the second-order dynamic equations with sign
changing nonlinear term on time scales.

In [3], Anderson discussed the following dynamic equation on time scales:

u△∇(t) + a(t)f(u(t)) = 0, t ∈ (0, T ), (1.3)

u(0) = 0, αu(η) = u(T ). (1.4)

He obtained some results for the existence of one positive solution of the problem

(1.3) and (1.4) based on the limits f0 = lim
u→0+

f(u)

u
and f∞ = lim

u→0

f(u)

u
.

In [8], Kaufmann studied the problem (1.3) and (1.4) and obtained the ex-
istence results of finitely many positive solutions and countably many positive
solutions.

In [10], Jian-Ping Sun and Wan-Tong Li considered the following system on
time scale T:

u∆∆
i (t) + fi(u1(t), u2(t), · · · , un(t)) = 0, t ∈ (0, T ), (1.5)

u∆i (0) = 0 = ui(σ
2(T )) i = 1, 2, · · · , n. (1.6)

By using the theory of the fixed point index, the authors investigate the effect
of σ2(T ) on the existence and nonexistence of positive solution for the system
(1.5) and (1.6) in sublinear cases.
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In [12], Luo and Ma discussed the following dynamic equation on time scales:

u∆∇(t) + a(t)f(u(t)) = 0, t ∈ (0, T ), (1.7)

u(0) = βu(η), u(T ) = αu(η). (1.8)

They obtained some results for the existence of one positive solution and of at
least three positive solutions of the problem (1.7) and (1.8) by using a fixed point
theorem and Leggett-Williams fixed point theorem, respectively.

Su et. al. [13] investigated the following singular m-point p-Laplacian bound-
ary value problem on time scales with the sign changing nonlinearity:

(φp(u
∆(t)))∇ + a(t)f(t, u(t)) = 0, t ∈ (0, T ), (1.9)

u(0) = 0, u(T )−
m−2∑
i=1

ψi(u(ξi)) = 0, (1.10)

where φp(u) = |u|p−2u, p > 1, 0 < ξ1 < · · · < ξm−2 < ρ(T ), a(t) ∈ Cld((0, T ),
(0,+∞)), f ∈ Cld((0, T ) × (0,+∞), (−∞,+∞)). They presented some new
existence criteria for positive solutions of the problem (1.9) and (1.10) by using
the well-known Schauder fixed point theorem and upper and lower solutions
method.

In [14], Sun and Li considered the existence of positive solutions of the fol-
lowing dynamic equations on time scales:

u△∇(t) + a(t)f(t, u(t)) = 0, t ∈ (0, T ), (1.11)

βu(0)− γu△(0) = 0, αu(η) = u(T ). (1.12)

They obtained the existence of single and multiple positive solutions of the prob-
lem (1.11) and (1.12) by using fixed point theorem and Leggett-Williams fixed
point theorem, respectively.

In [16], Wang and Agarwal considered a general type of delay neural networks
on time scales, by contraction principle and Gronwall-Bellman’s inequality, they
obtained some existence results of almost periodic solution for the problem.

The key conditions used in the above papers is that the nonlinearity is non-
negative, so the solution is concave down. If the nonlinear term is negative
somewhere, then the solution needs no longer be concave down. As a result,
it is difficult to find positive solutions for the dynamical equation when the
nonlinearity change sign.

The present work is moviated by recent papers [13-16]. To date few paper has
appeared in the literature which discusses the multipoint boundary value prob-
lem for second-order dynamic equations on time scales when nonlinear term may
change sign. This paper attempts to fill this gap in the literature. In this paper,
on the one hand, our work concentrates on the case when the nonlinear term
may change sign, we will use the property of the solutions of the BVP (1.1) and
(1.2) to overcome the difficulty. On the other hand, we will establish the key
conditions in Theorem 3.1 and Theorem 3.2 to show the existence of positive
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solutions of the BVP (1.1) and (1.2).

The rest of the paper is arranged as follows. We state some basic time scale
definitions and prove several preliminary results in Section 2, Section 3 is devoted
to the existence of positive solution of (1.1) and (1.2), the main tool being
the fixed point theorem in cone. At the end of the paper, we will give an
example which illustrates that our work is true. We also point out that when
f ∈ C([0, T ]× [0,+∞), [0,+∞)), i.e., the nonlinear term f is positive, (1.1) and
(1.2) becomes a boundary value problem on time scales just considered in [15].
Our main results extend and include the main results of [14, 15].

2. Preliminaries and some Lemmas

For convenience, we list the following definitions which can be found in [1, 4,
6, 7].

Definition 2.1. A time scale T is a nonempty closed subset of real numbers R.
For t < supT and r > inf T, define the forward jump operator σ and backward
jump operator ρ, respectively, by

σ(t) = inf{τ ∈ T | τ > t} ∈ T,

ρ(r) = sup{τ ∈ T | τ < r} ∈ T.

for all t, r ∈ T. If σ(t) > t, t is said to be right scattered, and if ρ(r) < r,
r is said to be left scattered; if σ(t) = t, t is said to be right dense, and if
ρ(r) = r, r is said to be left dense. If T has a right scattered minimum m, define
Tk = T − {m}; otherwise set Tk = T. If T has a left scattered maximum M ,
define Tk = T− {M}; otherwise set Tk = T.

Definition 2.2. For f : T → R and t ∈ Tk, the delta derivative of f at the
point t is defined to be the number f∆(t), (provided it exists), with the property
that for each ϵ > 0, there is a neighborhood U of t such that

|f(σ(t))− f(s)− f∆(t)(σ(t)− s)| ≤ ϵ|σ(t)− s|,
for all s ∈ U .

For f : T → R and t ∈ Tk, the nabla derivative of f at t is the number
f∇(t), (provided it exists), with the property that for each ϵ > 0, there is a
neighborhood U of t such that

|f(ρ(t))− f(s)− f∇(t)(ρ(t)− s)| ≤ ϵ|ρ(t)− s|,
for all s ∈ U .

Definition 2.3. A function f is left-dense continuous (i.e. ld-continuous), if f
is continuous at each left-dense point in T and its right-sided limit exists at each
right-dense point in T.
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Definition 2.4. If G∆(t) = f(t), then we define the delta integral by∫ b

a

f(t)∆t = G(b)−G(a).

If F∇(t) = f(t), then we define the nabla integral by∫ b

a

f(t)∇t = F (b)− F (a).

To prove the main results in this paper, we will employ several lemmas. These
lemmas are based on the linear BVP

u∆∇(t) + h(t) = 0, t ∈ (0, T ), (2.1)

βu(0)− γu∆(0) = 0, u(T ) =

m−2∑
i=1

aiu(ξi), m ≥ 3. (2.2)

Lemma 2.5. (see [15]). If d ̸= 0 , then for h ∈ Cld[0, T ] the BVP (2.1) and
(2.2) has the unique solution

u(t) = −
∫ t

0

(t− s)h(s)∇s+ βt+ γ

d

∫ T

0

(T − s)h(s)∇s

−βt+ γ

d

m−2∑
i=1

ai

∫ ξi

0

(ξi − s)h(s)∇s. (2.3)

Lemma 2.6. (see [15]). Assume (H1) holds, For h ∈ Cld[0, T ] and h ≥ 0, then
the unique solution u of (2.1) and (2.2) satisfies

u(t) ≥ 0, for t ∈ [0, T ].

Lemma 2.7. (see [15]). Let
m−2∑
i=1

aiξi > T, d ̸= 0. If h ∈ Cld[0, T ] and h ≥ 0,

then (2.1) and (2.2) has no positive solution.

Lemma 2.8. (see [15]). Assume (H1) holds, For h ∈ Cld[0, T ] and h ≥ 0, then
the unique solution u of (2.1) and (2.2) satisfies

inf
t∈[ξm−2,T ]

u(t) ≥ r∥u∥,

where

r = min

{
am−2 (T − ξm−2)

T − am−2ξm−2
,
am−2ξm−2

T
,
ξm−2

T

}
, ∥u∥ = sup

t∈[0,T ]

|u(t)|.

Let E = Cld([0, T ], R) be the set of all ld-continuous functions from [0, T ]
to R, and Let the norm on Cld([0, T ], R) be the maximum norm. Then the
Cld([0, T ], R) is a Banach space. We define two cones by

P = {u : u ∈ E, u(t) ≥ 0, t ∈ [0, T ]},
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and

K = {u|u ∈ E, u(t) is nonnegative on [0, T ], inf
t∈[ξm−2,T ]

u(t) ≥ r ∥ u ∥},

where r is the same as in Lemma 2.8.
It is easy to see that the BVP (1.1) and (1.2) has a solution u = u(t) if and

only if u solves the equation

u(t) = −
∫ t

0

(t− s)a(s)f(s, u(s))∇s+ βt+ γ

d

∫ T

0

(T − s)a(s)f(s, u(s))∇s

−βt+ γ

d

m−2∑
i=1

ai

∫ ξi

0

(ξi − s)a(s)f(s, u(s))∇s.

We define the operators G : P → E and H : K → E as follows

(Gu)(t) = −
∫ t

0

(t− s)a(s)f(s, u(s))∇s+ βt+ γ

d

∫ T

0

(T − s)a(s)f(s, u(s))∇s

−βt+ γ

d

m−2∑
i=1

ai

∫ ξi

0

(ξi − s)a(s)f(s, u(s))∇s,

(2.4)

(Hu)(t) = −
∫ t

0

(t− s)a(s)f+(s, u(s))∇s

+
βt+ γ

d

∫ T

0

(T − s)a(s)f+(s, u(s))∇s

−βt+ γ

d

m−2∑
i=1

ai

∫ ξi

0

(ξi − s)a(s)f+(s, u(s))∇s,

(2.5)

where f+(t, u(t)) = max{f(t, u(t)), 0}, t ∈ [0, T ].
It is obvious that K is a cone in E. By Lemma 2.3, H(K) ⊂ K. So by

applying Arzela-Ascoli theorem on time scales [2], we can obtain that H(K) is
relatively compact. In view of Lebesgue’s dominated convergence theorem on
time scales [6], it is easy to prove that H is continuous. Hence, H : K → K is
completely continuous.

Lemma 2.9. (see [9]) Let K be a cone in a Banach space X. Let D be an
open bounded subset of X with DK = D ∩K ̸= ϕ and DK ̸= K. Assume that
A : DK −→ K is a completely continuous map such that x ̸= Ax for x ∈ ∂DK .
Then the following results hold:
(1) If ∥Ax∥ ≤ ∥x∥, x ∈ ∂DK , then i(A,DK ,K) = 1;
(2) If there exists x0 ∈ K\{θ} such that x ̸= Ax+ λx0, for all x ∈ ∂DK and all
λ > 0, then i(A,DK ,K) = 0;
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(3) Let UK be open in X such that UK ⊂ DK . If i(A,DK ,K) = 1 and
i(A,UK ,K) = 0, then A has a fixed point in DK\UK .

The same results holds, if i(A,DK ,K) = 0 and i(A,UK ,K) = 1.
We define

Kρ = {u(t) ∈ K : ∥u∥ < ρ}, Ωρ = {u(t) ∈ K : min
ξm−2≤t≤T

u(t) < rρ}.

Lemma 2.10. (see [11]) Ωρ defined above has the following properties:
(a) Krρ ⊂ Ωρ ⊂ Kρ;
(b) Ωρ is open relative to K;
(c) x ∈ ∂Ωρ if and only if min

ξm−2≤t≤T
x(t) = rρ;

(d) If x ∈ ∂Ωρ, then rρ ≤ x(t) ≤ ρ for t ∈ [ξm−2, T ].

Now, for the convenience, we introduce the following notations. Let

fρrρ = min

{
min

ξm−2≤t≤T

f(t, u)

ρ
: u ∈ [rρ, ρ]

}
,

fρ0 = max

{
max
0≤t≤T

f(t, u)

ρ
: u ∈ [0, ρ]

}
,

fα = lim
u→α

sup max
0≤t≤T

f(t, u)

u
, fα = lim

u→α
inf min

ξm−2≤t≤T

f(t, u)

u
, (α := ∞ or 0+),

m = d

(
(βT + γ)

∫ T

0

(T − s)a(s)∇s

)−1

, (2.6)

M = d

(
min

{
βξm−2 + γ, βmax

{
m−2∑
i=1

aiξ1, am−2ξm−2

}
+ γ

m−2∑
i=1

ai

}
×
∫ T

ξm−2

(T − s)a(s)∇s

)−1

.

(2.7)

Lemma 2.11. If f satisfies the following conditions

fρ0 ≤ m and u ̸= Hu, for u ∈ ∂ Kρ, (2.8)

then i(H,Kρ,K) = 1.

Proof. By (2.6) and (2.8), we have for ∀u ∈ ∂ Kρ,

∥ Hu ∥ ≤ βT + γ

d

∫ T

0

(T − s)a(s)f(s, u(s))∇s

≤ ρm(βT + γ)

d

∫ T

0

(T − s)a(s)∇s

= ρ = ∥u∥.
�
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This implies that ∥Hu∥ ≤ ∥u∥ for u ∈ ∂ Kρ. By Lemma 2.5(1), we have

i(H,Kρ,K) = 1.

Lemma 2.12. If f satisfies the following conditions

fρrρ ≥Mr and u ̸= Hu for u ∈ ∂Ωρ, (2.9)

then i(H,Ωρ,K) = 0.

The Proof is similar to Lemma 3.3 in [15], here we omit it.

3. Existence theorems of positive solutions

Main results are here

Theorem 3.1. Assume (H1), (H2) and (H3) hold, and assume that one of the
following conditions hold:

(H4) There exist ρ1, ρ2 ∈ (0,+∞) with ρ1 < rρ2 such that

(1) f(t, u) ≥ 0, t ∈ [ξm−2, T ], u ∈ [rρ1, ρ2];

(2) fρ10 ≤ m, fρ2rρ2 ≥Mr;

(H5) There exist ρ1, ρ2 ∈ (0,+∞) with ρ1 < ρ2 such that

(3) fρ20 ≤ m;

(4) f(t, u) ≥Mrρ1, t ∈ [ξm−2, T ], u ∈ [r2ρ1, ρ2].

Then (1.1), (1.2) has a positive solution.

Proof. Assume that (H4) holds. We show that H has a fixed point u1 in
Ωρ2\Kρ1 . By Lemma 2.11, we have that

i(H,Kρ1 ,K) = 1.

By Lemma 2.12, we have that

i(H,Kρ2 ,K) = 0.

By Lemma 2.10 (a) and ρ1 < rρ2, we have Kρ1 ⊂ Krρ2 ⊂ Ωρ2 . It follows from

Lemma 2.9(3) that A has a fixed point u1 in Ωρ2\Kρ1 , The proof is similar when
H5 holds, and we omit it here. The proof is complete. �

Theorem 3.2. Assume (H1), (H2) and (H3) hold, and suppose that one of the
following conditions holds:

(H8) There exist ρ1, ρ2, ρ3 ∈ (0,+∞) with ρ1 < rρ2 and ρ2 < ρ3 such that

(1) fρ10 ≤ m, fρ2rρ2 ≥Mr, u ̸= Hu, ∀ u ∈ ∂Ωρ2 , and f
ρ3
0 ≤ m;

(2) f(t, u) ≥ 0, t ∈ [ξm−2, T ], u ∈ [rρ1, ρ3].



Positive solutions for nonlinear m-point BVP 559

(H9) There exist ρ1, ρ2, ρ3 ∈ (0,+∞) with ρ1 < ρ2 < rρ3 such that

(1) fρ20 ≤ m, fρ1rρ1 ≥Mr, u ̸= Hu, ∀ u ∈ ∂Kρ2 , and f
ρ3
rρ3 ≥Mr;

(2) f(t, u) ≥ 0, t ∈ [ξm−2, T ], u ∈ [rρ2, ρ3], and f(t, u) ≥Mrρ1,
t ∈ [ξm−2, T ], u ∈ [r2ρ1, ρ2].

Then (1.1), (1.2) has two positive solutions. Moreover, if (H8)f
ρ1
0 ≤ m is

replaced by fρ10 < m, then (1.1), (1.2) has a third positive solution u3 ∈ Kρ1 .

Proof. Assume (H8) holds, we show that H has a fixed point u1 either in ∂Kρ1

or u1 in Ωρ2 \Kρ1 . If u ̸= Hu, u ∈ ∂Kρ1

∪
∂Kρ3 , by Lemmas 2.11 and 2.12, we

have

i(H,Kρ1 ,K) = 1, i(H,Ωρ2 ,K) = 0, i(H,Kρ3 ,K) = 1.

By Lemma 2.10(a) and ρ1 < rρ2, we have Kρ1 ⊂ Krρ2 ⊂ Ωρ2 . By Lemma

2.9(3), we have H has a fixed point u1 ∈ Ωρ2\Kρ1 . Similarly, H has a fixed

point u2 ∈ Kρ3\Ωρ2 . Clearly,
∥u1∥ > ρ1, min

t∈[ξm−2,T ]
u1(t) ≥ r∥u1∥ > rρ1.

This implies that rρ1 ≤ u1(t) ≤ ρ2, t ∈ [ξm−2, T ]. By (H8)(2), we have
f(t, u1(t)) ≥ 0, t ∈ [ξm−2, T ], i.e. f

+(t, u1(t)) = f(t, u1(t)). Hence, we can get
Hu1 = Gu1. That means u1 is a fixed point of G. From u2 ∈ Kρ3\Ωρ2 , ρ2 < ρ3
and Lemma 2.10(a) we have Krρ2 ⊂ Ωρ2 ⊂ Kρ3 . Obviously, ∥u2∥ > rρ2. This
implies that

min
t∈[ξm−2,T ]

u2(t) ≥ r∥u2∥ > r2ρ2.

Therefore,

r2ρ2 ≤ u2(t) ≤ ρ3, t ∈ [ξm−2, T ].

By ρ1 < rρ2 and (H8)(2), we have f(t, u2(t)) ≥ 0, t ∈ [ξm−2, T ], i.e. f
+(t, u2(t)) =

f(t, u2(t)). So u2 is another fixed point of G. Thus, we have proved that (1.1)
and (1.2) has at least two positive solutions u1 and u2. The proof is similar
when (H9) holds and we omit it here. The proof is completed. �

Remark 3.1. If f ∈ C([0, T ]× [0,+∞), [0,+∞)), i.e., the nonlinear term f is
positive. Theorem 3.1 and 3.2 improve Theorem 3.1 in [15]. When m = 3, the
BVP (1.1) and (1.2) becomes the problem considered in [14].

4. Example

In this section, we present a simple example to explain our results.

Let T = {( 12 )
n : n ∈ N}

∪
{1}, T = 1. Consider the following BVP on time

scales

u∆∇(t) + f(t, u(t)) = 0, t ∈ (0, T ), (4.1)

1

2
u(0)− 1

3
u∆(0) = 0, u(T ) =

1

4
u(

1

3
), (4.2)
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where

f(t, u) := f(u) =



(
u− 1

12

)3

, u ∈ [0, 1
12 ];

1

2
sin(

6π

11
u− π

22
), u ∈ [

1

12
, 1];

1

2
u, u ∈ [1, 2];

1 +
1

224
(u− 2)2, u ∈ [2, 24];

1 +
1

484
[1 + (u− 24)(30− u)], u ∈ [24,+∞).

It is easy to check that f : [0, 1]× [0,+∞) −→ (−∞,+∞) is continuous. In this
case, a(t) ≡ 1, β = 1

2 , γ = 1
3 , a1 = 1

4 , ξ1 = 1
3 , and m = 3, it follows from a

direct calculation that

0 < a1ξ1 =
1

4
· 1
3
=

1

12
< 1,

d = β

(
T −

m−2∑
i=1

aiξi

)
+ γ

(
1−

m−2∑
i=1

ai

)
=

1

2
(1− 1

12
) +

1

3
(1− 1

4
) =

17

24
> 0,

we can easily find that (H1), (H2) and (H3) hold, and

m = d

(
(βT + γ)

∫ T

0

(T − s)a(s)∇s

)−1

=
17

24

(
(
1

2
+

1

3
)

∫ 1

0

(1− s)ds

)−1

=
17

10
,

M = d

(
min

{
βξm−2 + γ, βmax

{
m−2∑
i=1

aiξ1, am−2ξm−2

}
+ γ

m−2∑
i=1

ai

}

×
∫ T

ξm−2

(T − s)a(s)∇s

)−1

=
17

24

(
min

{
1

2
· 1
3
+

1

3
,

1

2
· 1

12
+

1

3
· 1
4

}∫ 1

1
3

(1− s)ds

)−1

=
51

2
,

r = min

{
am−2 (T − ξm−2)

T − am−2ξm−2
,
am−2ξm−2

T
,
ξm−2

T

}

= min

{
1
4

(
1− 1

3

)
1− 1

4 · 1
3

,
1
4 · 1

3

1
,

1
3

1

}

=
1

12
.
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Choose ρ1 = 1, ρ2 = 24, ρ3 = 30, it is easy to check that 1 = ρ1 < rρ2 =
1

12
× 24 = 2 < ρ2 < ρ3, f(t, u) = f(u) ≥ 0, for t ∈ [ 13 , 1] and u ∈ [ 1

12 · 1, 30],
moreover,

fρ10 = max

{
max
0≤t≤1

f(t, u)

1
: u ∈ [0, 1]

}
=

1

2
≤ m =

17

10
,

fρ2rρ2 = min

{
min

1
3≤t≤1

f(t, u)

24
: u ∈ [2, 24]

}

=
1
2 · 210

24
≈ 21.3333 ≥Mr =

51

2
· 1

12
= 2.1250,

fρ30 = max

{
max
0≤t≤1

f(t, u)

30
: u ∈ [0, 30]

}
=

247

7260
≤ m =

17

10
.

By (2.5), we have

(Hu)(t) = −
∫ t

0

(t− s)a(s)f+(s, u(s))∇s

+
βt+ γ

d

∫ T

0

(T − s)a(s)f+(s, u(s))∇s

−βt+ γ

d

m−2∑
i=1

ai

∫ ξi

0

(ξi − s)a(s)f+(s, u(s))∇s

= −
∫ t

0

(t− s)f+(s, u(s))∇s+
1
2 t+

1
3

17
24

∫ 1

0

(1− s)f+(s, u(s))∇s

−
1
2 t+

1
3

17
24

· 1
4
·
∫ 1

3

0

(
1

3
− s)f+(s, u(s))∇s.

Since

f(t, u) = f(u) ≤ 485

484
, t ∈ [0, 1], u ∈ [0, 24], for u ∈ ∂K24.

We have

∥Hu∥ ≤
1
2 + 1

3
17
24

∫ 1

0

(1− s)f+(s, u(s))∇s ≤ 2425

4114
< 24 = ∥u∥.

This implies Hu ̸= u, for u ∈ ∂Ω24. Thus, (H8) of Theorem 3.2 is satisfied.
Then the BVP (4.1) and (4.2) has two positive solutions u1, u2 satisfying

∥u1∥ ≤ 24, ∥u2∥ > 24.
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Remark 4.1. We note that Theorem 3.1 in [14, 15] can not apply to our example.
Hence, we generalize the results[14, 15].
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