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ON SOME PROPERTIES OF BARRIERS AT INFINITY FOR

SECOND ORDER UNIFORMLY ELLIPTIC OPERATORS

Sungwon Cho

Abstract. We consider the boundary value problem with a Dirichlet condition for
a second order linear uniformly elliptic operator in a non-divergence form. We study
some properties of a barrier at infinity which was introduced by Meyers and Serrin to
investigate a solution in an exterior domains. Also, we construct a modified barrier
for more general domain than an exterior domain.

1. Introduction

We consider the following second order linear uniformly elliptic partial differential

operator in a non-divergence form:

(L) L =

n∑
i,j=1

aij(x)Dij +

n∑
i=1

bi(x)Di + c(x), c(x) ≤ 0,

where Di represents a partial derivative with xi direction, namely

Di =
∂

∂xi
, and Dij = DjDi =

∂2

∂xi∂xj
.

A uniformly ellipticity means that, for some strictly positive constant λ1, λ2,

(UE) λ1|x|2 ≤
n∑

i,j=1

aij(x)xixj ≤ λ2|x|2, x = (x1, x2, . . . , xn),

for any x ∈ Rn. When bi(x) = c(x) = 0, the operator turns into

(Λ) Λ =

n∑
i,j=1

aij(x)Dij ,
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which will be frequently treated. A prototype of these operators is the well known

Laplace operator:

(∆) ∆ =

n∑
i=1

Dii =

n∑
i=1

∂2

∂xi∂xi
.

In fact, the operator (Λ) turns into the Laplace operator (∆) when λ1 = λ2 = 1.

With these operators, we consider the following boundary value problem of the

first kind, so called a Dirichlet problem:

(1.1)

{
Lu = 0 in Ω,

u = g on ∂Ω.

Here, Ω is a domain, open and connected set in Rn, ∂Ω denotes its topological

boundary, and g is a given function defined on ∂Ω.

Throughout the paper, we assume that the given data, such as g, ∂Ω, aij , bi, c

are smooth. Thus we deal a solution in a classical sense, namely, a solution u is

differentiable up to second order, u ∈ C2, provided that if it exists.

When Ω is bounded, to obtain the uniqueness of a solution, it is common to use

the maximum principle. In fact, the sign condition c(x) ≤ 0 from (L) is needed to

hold the principle. The following version of the maximum principle appears in [4,

Corollary 3.2]. See also [10] for more about maximum principles.

Theorem 1.1 (Maximum principle). Let L be elliptic in a bounded domain Ω.

Suppose that in Ω,

Lu ≥ 0(≤ 0), c ≤ 0,

with u ∈ C0(Ω). Then

sup
Ω

u ≤ sup
∂Ω

u+ (inf
Ω

u ≥ inf
∂Ω

u−).

If Lu = 0 in Ω, then

sup
Ω

|u| = sup
∂Ω

|u|.

If we have two solutions u1, u2, then u1−u2 is also a solution with a zero condition

on its boundary. Thus, u1 = u2 by the maximum principle, Theorem 1.1.

For further results of bounded domains, such as a existence, uniqueness, regular-

ity, one may refer to [4, 2, 6, 7].
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But for unbounded domains, the uniqueness is not immediate. For example, one

consider for n ≥ 3, {
∆u = 0 in Rn \B1(0),

u = 0 on ∂B1(0).

Here, B1(0) denotes a open ball of radius 1 centered at the origin. For the problem,

u(x) = c(1 − 1
|x|n−2 ) for any constant c are solutions. Thus, the uniqueness fails

in general, for an unbounded domain. The domain Rn \ B1(0) is called an exterior

domain, which means the complement of a bounded domain.

Among other things, Meyers and Serrin [9] considered the existence and unique-

ness of a Dirichlet problem with an additional condition at infinity in an exterior

domain. For the purpose, they introduced a barrier at infinity (see Definition 2.2),

which has an important role for the behavior of a solution at infinity.

In this paper, we study some properties of a barrier at infinity.

Briefly, we illustrate the contents of the paper. In Section 2, we prepare some

known results, and in Section 3, we present main results about some properties

of barrier functions including a non-uniqueness, decay at infinity, explicit barrier

functions for some uniformly elliptic operators, and some examples related.

Throughout the paper, the summation convention over repeated indices is as-

sumed.

2. Preliminaries

In this section, we gather some known results to present the main results in

Section 3, and introduce some definitions.

The following version of a maximum principle is called the strong maximum

principle due to E. Hopf [5]. One may compare Theorem 1.1 which is also called a

weak maximum principle.

Theorem 2.1 (Strong maximum principle). Let L be uniformly elliptic, c = 0

and Lu ≥ 0(≤) in a domain Ω (not necessarily bounded). Then if u achieves its

maximum (minimum) in the interior of Ω, u is constant.

Proof. For the proof, one may refer to [4, Theorem 3.5]. �

For the next we present a Harnack inequality:
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Theorem 2.2 (Harnack Inequality). Let u ∈ W 2,n(Ω) satisfy Lu = 0, u ≥ 0 in Ω.

Here, W 2,n is a Sobolev space. Then for any ball B2r(y) ⊂ Ω, we have

sup
BR(y)

u ≤ C inf
BR(y)

u,

where C = C(n, λ1, λ2)

Proof. For the proof, see [4, Corollary 9.22], for example. �

In [9], Meyers and Serrin treated a Dirichlet problem for second order elliptic

partial differential equations in an exterior domain:{
Lu = 0 in Ω,

u = g on ∂Ω.

As mentioned in Sec. 1. Introduction, this problem is not well set, namely we do not

have the existence and uniqueness of the solution, since the behavior near infinity is

not fixed. In this respect, they treat two types of Dirichlet problems:

Definition 2.1. The exterior Dirichlet problem I: The function u tend to an assigned

limit l as x tends to infinity.

The exterior Dirichlet problem II: The function u be bounded in Ω.

We say that the given Dirichlet problem is well set if there exists a solution and

the solution is unique. For the existence of the exterior Dirichlet problem I, the

following barrier function is useful.

Definition 2.2. Barrier at infinity:

(i) v is defined and positive in some neighborhood of infinity.

(ii) v tend to 0 as r → ∞.

(iii) v ∈ C2 and Λv ≤ 0.

or

(iii*) v ∈ C; if u satisfies Λu ≤ 0 in some region R which is contained the domain,

and if u ≤ v at every point of FR, then u ≤ v in R.

The role of barrier function become clear from the next theorem. From [9, The-

orem 1], we have that there exists a barrier at infinity if and only if the exterior

Dirichlet problem I is well set. We state it as a following theorem:

Theorem 2.3. Problem I is well set for the equation Λu = 0 if and only if this

equation has a barrier at infinity.
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Thus the existence of a barrier is necessary and sufficient condition for the well set

of the Dirichlet problem type 1. In the next section, we study the various properties

of the barrier at infinity.

3. Properties of a Barrier at Infinity

In this main section, we study some various properties of a barrier at infinity. We

begin this section with the study of a uniqueness about a barrier function at infinity

(see Definition 2.2).

3.1. A uniqueness of a barrier at infinity

Example 3.1. Consider the Laplace operator ∆ = δijDij = Dii in Rn, n ≥ 3.

Choose v to be v = |x|−µ, µ > 0. Then it is obvious to see that it satisfies (i),

(ii) of Definition 2.2. For (iii), note that

Div = −µ|x|−µ−2xi,

Diiv = −µ|x|−µ−2 + µ(µ+ 2)|x|−µ−4x2i ,

∆v = µ|x|−µ−4(−δij |x|2 + δij(µ+ 2)x2i ) = µ|x|−µ−4(−n|x|2 + (µ+ 2)|x|2).

Thus we have ∆v ≤ 0 for µ ≤ n − 2 for n ≥ 3. In all, v = |x|−µ are barriers at

infinity for µ ≤ n− 2, n ≥ 3. Note also that
0 < µ < n− 2 → ∆v < 0,

µ = n− 2 → ∆v = 0,

µ > n− 2 → ∆v > 0.

The above example shows us that a barrier function is not unique. We state the

observation as a theorem without a proof.

Theorem 3.1. A barrier at infinity is not unique, in general.

3.2. Decay of a barrier at infinity For the next, we consider the decay of a

barrier at infinity.

Let v be a barrier at infinity corresponding to Λ defined in Rn \ BR for some

R > 0. By Theorem 2.3, we obtain the solution of the exterior Dirichlet problem I,

namely,

Λu = 0 in Rn \BR, u = v in ∂BR, lim
x→∞

u = 0.

Note that the solution u is also a barrier at infinity. For this, it is enough to check

that u > 0. If u(x0) < 0 for some x0, then for sufficiently small ϵ > 0, u + ϵ < 0
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for some compact domain D containing x0, u = 0 on ∂D. But it contradict to the

maximum principle, Theorem 1.1.

If u(x0) = 0 for some x0 as a local minimum, it also contradicts the strong

maximum principle, Theorem 2.1.

Thus u > 0 in Rn \BR. Thus in all, u is a barrier at infinity.

We claim that a solution u has a maximal growth (the fastest decaying) barrier

at infinity.

If not, there exists a barrier w such that w << u in some neighborhood of

infinity. Without loss of generality we may assume that u,w are defined in Rn \BR,

and w > cu on ∂BR for some positive constant c.

Since w << u, there exist R′ > 0 and a open connected set D such that (Rn \
BR′) ⊂ D, w = cu on ∂D, and w ≤ cu in D.

We claim w = cu in D. If not, there exists a point x0 such that w(x0) < cu(x0).

We can choose ϵ > 0 such that w(x0) + ϵ < cu(x0). Let D′ := {x ∈ D|w(x) + ϵ <

cu(x)}. Since limx→∞w + ϵ > 0 and limx→∞ cu = 0, D′ is bounded and w + ϵ = cu

on ∂D′. Note that Λ(w+ ϵ) ≤ Λcu = 0, by a maximum principle, w+ ϵ ≥ cu in D′,

which leads to a contradiction.

Thus in all, w << u is not a possible case. In conclusion we have that the solution

u is a maximal growth (the fastest decaying) barrier at infinity.

But for the slowest decaying barrier, it is not clear. We may impose the following

question:

Problem: Is there a minimal (slowest decaying) growth barrier at infinity for a

fixed linear operator L?

For the Laplace operator, we observe the following:

Let v be a barrier at infinity for the Laplace operator, and V := (− ln v(x))−m.

Then

DiV = m(− ln v)−m−1v−1Div,

and

DiiV =m(m+ 1)(− ln v)−m−2v−2(Div)
2 −m(− ln v)−m−1v−2(Div)

2

+m(− ln v)−m−1v−1Diiv.

Thus

∆V = [m(m+ 1)−m(− ln v)] (− ln v)−m−2v−2|Dv|2 +m(− ln v)−m−1v−1∆v.

Here, − ln v → +∞ since v → 0 as x → ∞. Thus in all, ∆V ≤ 0 for ∆v ≤ 0.
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More generally, let v be a barrier at infinity for Λ, and V := (− ln v(x))−m. Then,

by direct computations,

DiV = m(− ln v)−m−1v−1Div,

and

DijV =m(m+ 1)(− ln v)−m−2v−2DivDjv −m(− ln v)−m−1v−2DivDjv

+m(− ln v)−m−1v−1Dijv.

Thus,

ΛV ≤m(m+ 1)(− ln v)−m−2v−2λ2|Dv|2 −m(− ln v)−m−1v−2λ1|Dv|2

+m(− ln v)−m−1v−1Λv.

Here, − ln v → +∞ since v → 0 as x → ∞. Thus in all, ΛV ≤ 0 for Λv ≤ 0.

Note that

lim
x→∞

v(x)

(− ln v(x))−m
= lim

y→0

y

(− ln y)−m
= 0.

Hence for ∆ or Λ, if we have a barrier v at infinity we always obtain another barrier

V , which vanishes to 0 more slowly.

For the next, we consider the behavior of a given barrier at infinity with respect

to directions.

Using a Harnack inequality, a solution has the following property: it has the

comparable growth near infinity.

Theorem 3.2. Let Λu = 0 in Rn \ BR(0) and positive. Then, for any x, y ∈ Rn

such that |x| = |y| ≥ 2R, the following holds:

(3.1) N1 ≤
u(x)

u(y)
≤ N2

for some positive fixed constant N1, N2 depending on n, λ1, λ2.

Proof. We use a Harnack inequality. First consider the following covering:

T := {B1(z)| |z| = 2}.

Since T covers the set {1 < |z| < 3} and the set {3
2 ≤ |z| ≤ 5

2} is compact, there

exists a finite covering

Tn := {B1(zi)| |zi| = 2, i = 1, 2, ..., tn},

where tn depends on the dimensional constant n.
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Note that

T r
n := {Br(rzi), i = 1, 2, ..., tn}, r > 2R,

covers {3r
2 ≤ |z| ≤ 5r

2 }. Thus for any |x| = |y| ≥ 2R, using Harnack inequality

tn-times at most,

u(x) ≤ N tnu(y), u(y) ≤ N tnu(x),

where N depends on n, λ1, λ2. This leads to

(3.2) N1 ≤
u(x)

u(y)
≤ N2,

where N−1
1 = N2 = N tn . �

From Theorem 3.2, for a solution u at infinity, it follows that

0 < N1 ≤ lim inf
r→∞

u(rx)

u(ry)
≤ lim sup

r→∞

u(rx)

u(ry)
≤ N2 < +∞,

for any |x| = |y| = 1. Thus a solution has a uniform decay at infinity in every

direction.

Remark 3.2. In general we do not have a Harnack inequality for the super solution.

Thus for a general barrier at infinity satisfying Λv ≤ 0, we do not have the above

result.

3.3. Barriers at infinity for some uniformly elliptic operators For some

uniformly elliptic operators, explicitly, we can construct barriers at infinity.

Theorem 3.3. For a uniform elliptic operator Λ, there exists a barrier at infinity

of the form |x|−µ provided that nλ1
λ2

− 2 > 0, where λ1, λ2 are ellipticity constants

from (UE).

Proof. Let v = |x|−µ for µ > 0. Then it is obvious to see that v satisfies (i), (ii) of

Definition 2.2. For (iii), note that

Div = −µ|x|−µ−2xi, Dijv = −µ|x|−µ−2δij + µ(µ+ 2)|x|−µ−4xixj ,

Λv ≤ −µ|x|−µ−2nλ1 + µ(µ+ 2)|x|−µ−4λ2|x|2

= µ|x|−µ−2(−nλ1 + (µ+ 2)λ2) ≤ 0

for µ ∈ (0, nλ1
λ2

− 2]. �
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In fact, there is other type of barriers.

Example 3.3. Choose v = (log |x|)−m. Then

Div = −m(log |x|)−m−1|x|−2xi,

Dijv = m(m+ 1)(log |x|)−m−2|x|−4xixj −m(log |x|)−m−1(|x|−2δij − 2|x|−4xixj)

= m(log |x|)−m−2
(
(m+ 1)|x|−4xixj − (log |x|)(|x|−2δij − 2|x|−4xixj

)
,

Λv ≤ m(log |x|)−m−2
(
(m+ 1)λ2|x|−2 − (log |x|)(nλ1|x|−2 − 2λ2|x|−2

)
= m(log |x|)−m−2|x|−2 ((m+ 1)λ2 + (log |x|)(−nλ1 + 2λ2)) ≤ 0 for nλ1

λ2
−2 > 0.

Remark 3.4. For n ≥ 3, the fundamental solution Γ(x) = |x|2−n is a barrier at

infinity for the Laplace operator ∆. Then by direct computations Γ(x1, x2, ...,
xn√
λ
) is

a barrier for the operator Λ = ∆+(λ−1)Dnn for any λ > 0. Note that the operator

Λ has sufficiently small or large ellipticity constant λ1 and 1, 1 and λ2 depending on

λ. Thus it is possible Theorem 3.3 does hold even when nλ1
λ2

− 2 > 0 does not hold.

Furthermore, with the same uniform elliptic constants λ1, λ2, there are two oper-

ator Λ1, Λ2 such that Λ1 has a barrier and Λ2 has an anti barrier (see Definition 3.7).

For this, see [9, Section 9].

Theorem 3.4. For a uniform elliptic operator Λ with aij = aji, n ≥ 3, there exists

a barrier at infinity if the coefficients aij(x) converges to some limits as x → ∞,

namely, aij(x) → a0ij as |x| → ∞.

Proof. Since aij is symmetric, by a orthogonal transformation, we may assume that

a0ij = δij . For any ϵ > 0, there exists a large M > 0, such that |aij(x)− δij | < ϵ for

|x| > M . Thus, for v = |x|−µ, µ > 0,

Λv = (Λ−∆)v +∆v ≤ |aij(x)− δij ||Dijv|+∆v.

Using |aij(x)− δij | < ϵ,

Dijv = −µ|x|−µ−2δij + µ(µ+ 2)|x|−µ−4xixj ,

∆v = µ|x|−µ−4(−n|x|2 + (µ+ 2)|x|2),

Λv ≤ ϵµ(n+ (µ+ 2))|x|−µ−2 + µ(−n+ µ+ 2)|x|−µ−2 ≤ 0

for ϵ ≤ n−µ−2
n+µ+2 , µ < n− 2. �

Remark 3.5. From [9, Theorem 3], there is a so called three eigenvalue criterion:

For a elliptic case, if (aik) → (a0ik), r → ∞, and if (a0ik) has at least three posi-

tive eigenvalues (equivalently if Rank(a0ik) ≥ 3), then problem I is well-set for the

equation Λu = 0, which imply the theorem above.
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Also, we remark here that using Theorem 3.3, we can construct a operator Λ,

where aij do not converge at infinity but having a barrier at infinity.

For the next, we apply the method to a general elliptic operator L.

Theorem 3.5. For a general uniform elliptic operator L, there exists a barrier at

infinity provided that (−aij(x)δij + (µ + 2)aij(x)xixj |x|−2 − bi(x)xi) ≤ 0 for any

x = (x1, x2, ..., xn) ∈ Ω.

Proof. Let v = |x|−µ for µ > 0.

Then it is obvious to see that v satisfies (i), (ii) of Definition 2.2. For (iii), note

that

Div = −µ|x|−µ−2xi, Dijv = −µ|x|−µ−2δij + µ(µ+ 2)|x|−µ−4xixj ,

Lv = −µ|x|−µ−2aijδij + µ(µ+ 2)|x|−µ−4aijxixj − µ|x|−µ−2bixi

= µ|x|−µ−2(−aijδij + (µ+ 2)aijxixj |x|−2 − bixi) ≤ 0

for (−aij(x)δij + (µ+ 2)aij(x)xixj |x|−2 − bi(x)xi) ≤ 0. �

Corollary 3.6. For a uniform elliptic operator L, there exists a barrier at infinity

provided that nλ1−B
λ2

− 2 > 0, where B := supRn\BR
bi(x)xi for some large R.

Proof. Let v = |x|−µ for µ > 0.

Similar to the previous proof, check the following:

Lv ≤ −µ|x|−µ−2nλ1 + µ(µ+ 2)|x|−µ−4λ2|x|2 − µ|x|−µ−2bixi

= µ|x|−µ−2(−nλ1 + (µ+ 2)λ2 − bixi) = µ|x|−µ−2(−nλ1 + (µ+ 2)λ2 +B) ≤ 0

for µ ∈ (0, nλ1−B
λ2

− 2]. �

Similar to a barrier, we may apply the above method to an anti-barrier, which

also appear in [9, p. 522]. Here anti-barrier means the following:

Definition 3.7. A function v is an anti-barrier at infinity for the equation Λu = 0

if

(i) v tends to +∞ as r → ∞ and

(ii) v is twice continuously differentiable and Λv ≤ 0.
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Similar to above, let v = |x|µ for µ ∈ (0, 2). Then it is obvious to see that v

satisfies (i) of Definition 3.7. For (ii), note that

Div = µ|x|µ−2xi, Dijv = µ|x|µ−2δij + µ(µ− 2)|x|µ−4xixj ,

Λv ≤ µ|x|µ−2nλ2 + µ(µ− 2)|x|µ−4λ1|x|2 = µ|x|µ−2(nλ2 + (µ− 2)λ1) ≤ 0

for 0 < µ ≤ −nλ2
λ1

+ 2. But −nλ2
λ1

+ 2 ≤ 0.

For the next, one try with µ ≥ 2 when v = |x|µ. For (ii) of Definition 3.7, note

that

Λv ≤ µ|x|µ−2nλ2 + µ(µ− 2)|x|µ−4λ2|x|2 = µ|x|µ−2(nλ2 + (µ− 2)λ2).

The last term is strictly positive for µ ≥ 2.

Thus, unlike a barrier at infinity, we do not have a condition to guarantee the

existence of anti barrier of the form |x|µ. But n = 2 for the Laplace operator, the

fundamental solution log |x| is an anti barrier at infinity.

Remark 3.8. In fact, from [9, Theorem 2 and Theorem 6], we can conclude that

whether ∆(t) function is a Dini function or not, the barrier or anti barrier does

exists, respectively, where

A =

∑
aii∑

aik
xixk
|x|2

, A− 2 = ϵ, ∆(t) ≡ exp

{
−
∫ t

ϵ(s)
ds

s

}
.

Thus, Theorem 3.3 become clear from A ≥ nλ1
λ2

.

3.4. Some examples There are other types of an unbounded domain than an

exterior domain. One may consider the upper half space, Rn
+ := {x ∈ Rn

+|xn >

0, x = (x1, ..., xn)}, and a Dirichlet problem:{
∆u = 0 in Rn

+,

u = 0 on ∂Rn
+ = {xn = 0}.

As one can easily see, u = cxn for any constant c are solutions. Thus the uniqueness

is not guaranteed for the general domain, like an exterior domain.

To treat the general unbounded domain, we may introduce the following definition

which is generalized from Definition 2.2.

Definition 3.9. Barrier at infinity:

(i) v is defined and positive in the intersection of some neighborhood of infinity

and the given general unbounded domain.

(ii) v tend to 0 as r → ∞ in the domain.

(iii) v ∈ C2 and Λv ≤ 0 in the domain.

or
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(iii*) v ∈ C; if u satisfies Λu ≤ 0 in some region R, and if u ≤ v at every point of

FR, then u ≤ v in R.

Let Ω ⊂ Ω ⊂ Rn
+, n ≥ 2, and v := xn

|x|α = xn|x|−α for α > 1. Then v satisfies

Definition 3.9 for the Laplace operator ∆. Note that

Div = δin|x|−α − αxnxi|x|−α−2,

Dijv = −αδinxj |x|−α−2 − αδjnxi|x|−α−2 − αxnδij |x|−α−2 + α(α+ 2)xnxixj |x|−α−4,

∆v = −α|x|−α−2 (xn + xn + nxn) + α(α+ 2)xn|x|−α−2 ≤ 0

if α ≤ n. More generally, for a barrier at infinity v satisfying Definition 2.2, one

consider the following:

Di(xnv) = δinv + xnDiv, Dij(xnv) = δinDjv + δnjDiv + xnDijv,

Λ(xnv) = anjDjv + ainDiv + xnΛv ≤ 0

provided that ani = ain = δni, Dnv < 0.
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