• 제목/요약/키워드: Boundary Value Method

Search Result 776, Processing Time 0.018 seconds

THE METHOD OF QUASILINEARIZATION AND A THREE-POINT BOUNDARY VALUE PROBLEM

  • Eloe, Paul W.;Gao, Yang
    • Journal of the Korean Mathematical Society
    • /
    • v.39 no.2
    • /
    • pp.319-330
    • /
    • 2002
  • The method of quasilinearization generates a monotone iteration scheme whose iterates converge quadratically to a unique solution of the problem at hand. In this paper, we apply the method to two families of three-point boundary value problems for second order ordinary differential equations: Linear boundary conditions and nonlinear boundary conditions are addressed independently. For linear boundary conditions, an appropriate Green\`s function is constructed. Fer nonlinear boundary conditions, we show that these nonlinearities can be addressed similarly to the nonlinearities in the differential equation.

REPRODUCING KERNEL METHOD FOR SOLVING TENTH-ORDER BOUNDARY VALUE PROBLEMS

  • Geng, Fazhan;Cui, Minggen
    • Journal of applied mathematics & informatics
    • /
    • v.28 no.3_4
    • /
    • pp.813-821
    • /
    • 2010
  • In this paper, the tenth-order linear boundary value problems are solved using reproducing kernel method. The algorithm developed approximates the solutions, and their higher-order derivatives, of differential equations and it avoids the complexity provided by other numerical approaches. First a new reproducing kernel space is constructed to solve this class of tenth-order linear boundary value problems; then the approximate solutions of such problems are given in the form of series using the present method. Three examples compared with those considered by Siddiqi, Twizell and Akram [S.S. Siddiqi, E.H. Twizell, Spline solutions of linear tenth order boundary value problems, Int. J. Comput. Math. 68 (1998) 345-362; S.S.Siddiqi, G.Akram, Solutions of tenth-order boundary value problems using eleventh degree spline, Applied Mathematics and Computation 185 (1)(2007) 115-127] show that the method developed in this paper is more efficient.

AN ASYMPTOTIC INITIAL VALUE METHOD FOR SECOND ORDER SINGULAR PERTURBATION PROBLEMS OF CONVECTION-DIFFUSION TYPE WITH A DISCONTINUOUS SOURCE TERM

  • Valanarasu, T.;Ramanujam, N.
    • Journal of applied mathematics & informatics
    • /
    • v.23 no.1_2
    • /
    • pp.141-152
    • /
    • 2007
  • In this paper a numerical method is presented to solve singularly perturbed two points boundary value problems for second order ordinary differential equations consisting a discontinuous source term. First, in this method, an asymptotic expansion approximation of the solution of the boundary value problem is constructed using the basic ideas of a well known perturbation method WKB. Then some initial value problems and terminal value problems are constructed such that their solutions are the terms of this asymptotic expansion. These initial value problems are happened to be singularly perturbed problems and therefore fitted mesh method (Shishkin mesh) are used to solve these problems. Necessary error estimates are derived and examples provided to illustrate the method.

On a Symbolic Method for Fully Inhomogeneous Boundary Value Problems

  • Thota, Srinivasarao
    • Kyungpook Mathematical Journal
    • /
    • v.59 no.1
    • /
    • pp.13-22
    • /
    • 2019
  • This paper presents a symbolic method for solving a boundary value problem with inhomogeneous Stieltjes boundary conditions over integro-differential algebras. The proposed symbolic method includes computing the Green's operator as well as the Green's function of the given problem. Examples are presented to illustrate the proposed symbolic method.

AN INITIAL VALUE TECHNIQUE FOR SINGULARLY PERTURBED DIFFERENTIAL-DIFFERENCE EQUATIONS WITH A SMALL NEGATIVE SHIFT

  • Rao, R. Nageshwar;Chakravarthy, P. Pramod
    • Journal of applied mathematics & informatics
    • /
    • v.31 no.1_2
    • /
    • pp.131-145
    • /
    • 2013
  • In this paper, we present an initial value technique for solving singularly perturbed differential difference equations with a boundary layer at one end point. Taylor's series is used to tackle the terms containing shift provided the shift is of small order of singular perturbation parameter and obtained a singularly perturbed boundary value problem. This singularly perturbed boundary value problem is replaced by a pair of initial value problems. Classical fourth order Runge-Kutta method is used to solve these initial value problems. The effect of small shift on the boundary layer solution in both the cases, i.e., the boundary layer on the left side as well as the right side is discussed by considering numerical experiments. Several numerical examples are solved to demonstate the applicability of the method.

QUASILINEARIZATION FOR SECOND ORDER SINGULAR BOUNDARY VALUE PROBLEMS WITH SOLUTIONS IN WEIGHTED SPACES

  • Devi, J.Vasundhara;Vatsala, A.S.
    • Journal of the Korean Mathematical Society
    • /
    • v.37 no.5
    • /
    • pp.823-833
    • /
    • 2000
  • In this paper, we develop the method of quasilinearization comvined with the methos of upper and lower solutions for singular second order boundary value problems in weighted spaces. The sequences constructed converge uniformly and monotonically to the unique of the second singular order boundary value problem. Further we prove the rate of convergence is quadratic.

  • PDF

FUNCTIONAL ITERATIVE METHODS FOR SOLVING TWO-POINT BOUNDARY VALUE PROBLEMS

  • Lim, Hyo Jin;Kim, Kyoum Sun;Yun, Jae Heon
    • Journal of applied mathematics & informatics
    • /
    • v.31 no.5_6
    • /
    • pp.733-745
    • /
    • 2013
  • In this paper, we first propose a new technique of the functional iterative methods VIM (Variational iteration method) and NHPM (New homotopy perturbation method) for solving two-point boundary value problems, and then we compare their numerical results with those of the finite difference method (FDM).

A FIFTH ORDER NUMERICAL METHOD FOR SINGULARLY PERTURBED DIFFERENTIAL-DIFFERENCE EQUATIONS WITH NEGATIVE SHIFT

  • Chakravarthy, P. Pramod;Phaneendra, K.;Reddy, Y.N.
    • Journal of applied mathematics & informatics
    • /
    • v.27 no.1_2
    • /
    • pp.441-452
    • /
    • 2009
  • In this paper, a fifth order numerical method is presented for solving singularly perturbed differential-difference equations with negative shift. In recent papers the term negative shift has been using for delay. Similar boundary value problems are associated with expected first exit time problem of the membrane, potential in models for neuron and in variational problems in control theory. In the numerical treatment for such type of boundary value problems, first we use Taylor approximation to tackle terms containing small shifts which converts it to a boundary value problem for singularly perturbed differential equation. The two point boundary value problem is transformed into general first order ordinary differential equation system. A discrete approximation of a fifth order compact difference scheme is presented for the first order system and is solved using the boundary conditions. Several numerical examples are solved and compared with exact solution. It is observed that present method approximates the exact solution very well.

  • PDF

A FIFTH ORDER NUMERICAL METHOD FOR SINGULAR PERTURBATION PROBLEMS

  • Chakravarthy, P. Pramod;Phaneendra, K.;Reddy, Y.N.
    • Journal of applied mathematics & informatics
    • /
    • v.26 no.3_4
    • /
    • pp.689-706
    • /
    • 2008
  • In this paper, a fifth order numerical method is presented for solving singularly perturbed two point boundary value problems with a boundary layer at one end point. The two point boundary value problem is transformed into general first order ordinary differential equation system. A discrete approximation of a fifth order compact difference scheme is presented for the first order system. An asymptotically equivalent first order equation of the original singularly perturbed two point boundary value problem is obtained from the theory of singular perturbations. It is used in the fifth order compact difference scheme to get a two term recurrence relation and is solved. Several linear and non-linear singular perturbation problems have been solved and the numerical results are presented to support the theory. It is observed that the present method approximates the exact solution very well.

  • PDF