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Abstract. In this paper, we first propose a new technique of the functional
iterative methods VIM (Variational iteration method) and NHPM (New
homotopy perturbation method) for solving two-point boundary value prob-

lems, and then we compare their numerical results with those of the finite
difference method (FDM).
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1. Introduction

The numerical solution of two-point boundary value problems (BVPs) is very
important because its wide application in scientific research. Thus many scien-
tists try to find more accurate approximate solutions of BVPs. Numerical meth-
ods such as Finite difference method (FDM) [17] and Finite element method
(FEM) are computationally expensive and have less convergence speed and low
accuracy, which may produce inaccurate results. Therefore, many researchers
attempt to propose new methods for solving BVPs. In general, the functional
equations are very difficult to solve and their exact solutions are difficult to ob-
tain. Therefore, recently some various functional iterative methods have been
developed such as Variational iteration method (VIM) [3, 5, 6, 13, 14, 16], Ho-
motopy perturbation method (HPM) [7, 8, 9, 10, 11, 12] and New homotopy
perturbation method (NHPM) [4, 15] to solve the various functional equations.
In recent years, Computer Algebra Systems (CAS) such as Maple and Mathemat-
ica are developed. Consequently by using CAS, we can calculate approximate
solutions of functional equations more easily and quickly.
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The purpose of this paper is to provide more sophisticated functional iterative
methods VIM and NHPM for solving two-point boundary value problems by
using CAS. This paper is organized as follows. In Section 2, we introduce brief
description of the VIM and NHPM. In Section 3, we first propose a new technique
of the VIM and NHPM for solving two-point boundary value problems, and then
we compare their numerical results with those of the FDM. In Section 4, some
conclusion are drawn.

2. Brief Description of the VIM and NHPM

In this section, we give a brief description of the functional iterative methods
VIM and NHPM for two-point boundary value problems (BVPs).

2.1. VIM (Variational Iteration Method). We consider the following two-
point BVPs:

−d2u(x)

dx2
+ σ(x)u(x) = f(x), a < x < b, (1)

with the two-point boundary conditions

u(a) = α; u(b) = β (2)

where α and β are given real constants, and f(x) and σ(x) are given real con-
tinuous functions on a ≤ x ≤ b.

To illustrate the basic concepts of the VIM, Eq. (1) can be rewritten as

Lu(x) +Nu(x) = g(x), (3)

where L is a linear operator, N is a non-linear operator, and g(x) is a nonho-
mogeneous term. Then, we can construct a correct functional as follows:

un+1(x) = un(x) +

∫ x

0

λ(ξ){Lun(ξ) +Nũn(ξ)− g(ξ)}dξ, (4)

where λ(ξ) is a general Lagrange multiplier, which can be identified optimally
via variational theory. The second term on the right is called the correction term
and ũn is considered as a restricted variation, i.e., δũn = 0.

Once the Lagrange multiplier λ(ξ) is obtained by using variational theory and
δũn = 0, the following variational iterative method is obtained :

un+1(x) = un(x) +

∫ x

0

λ(ξ){Lun(ξ) +Nun(ξ)− g(ξ)}dξ (n ≥ 0) (5)

where u0 is a suitably chosen approximate function. The above functional iter-
ation can be easily computed by using Computer Algebra System (CAS) such
as Mathematica and Maple.



Functional iterative methods for solving two-point boundary value problems 735

2.2. NHPM(New Homotopy Perturbation Method). We consider the
following nonlinear BVP :

A(u(r))− f(r) = 0, r ∈ Ω, (6)

with the boundary conditions

B

(
u(r),

∂u(r)

∂n

)
= 0, r ∈ Γ, (7)

where A is a general differential operator, B is a boundary operator, f(r) is a
known analytical function, and Γ is the boundary of the domain Ω.

The operator A can be divided into two parts, L and N , when L is a linear
and N is a nonlinear operator. Therefore, Eq. (6) can be rewritten as

L(u(r)) +N(u(r))− f(r) = 0. (8)

By the homotopy technique, we construct a homotopy U(r, p) : Ω × [0, 1] → R,
which satisfies

H(U, p) = (1− p)[L(U)− u0] + p[A(U)− f(r)] = 0, p ∈ [0, 1], r ∈ Ω, (9)

or equivalently,

H(U, p) = L(U)− u0 + pu0 + p[N(U)− f(r)] = 0, (10)

where p ∈ [0, 1] is an embedding parameter, u0 is an initial approximation of
solution of Eq. (6). Clearly, we have

H(U, 0) = L(U)− u0 = 0,

H(U, 1) = A(U)− f(r) = 0.
(11)

The chainging process of p from 0 to 1 is just that of U(r, p) from L−1(u0) to
u(r), where u(r) is the exact solution of Eq. (6). According to the HPM, the
solutions of Eq. (10) can be represented as a power series in p as

U ≡ U(r, p) =

∞∑
n=0

pnUn. (12)

Now let us write the Eq. (10) in the following form

L(U) = u0 + p[f(r)− u0 −N(U)]. (13)

By applying the inverse operator L−1 to both sides of Eq. (13), we have

U = L−1(u0) + p[L−1(f(r))− L−1(u0)− L−1N(U)]. (14)

Suppose that the initial approximation of Eq. (6) has the form

u0 =

∞∑
n=0

anPn, (15)
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where a0, a1, a2, · · · are unknown coefficients and P0, P1, P2, · · · are specific func-
tions depending on the problem. Now by substituting Eqs. (12) and (15) into
the Eq. (14), we get

∞∑
n=0

pnUn = L−1

( ∞∑
n=0

anPn

)

+p

[
L−1(f(r))− L−1

( ∞∑
n=0

anPn

)
− L−1N

( ∞∑
n=0

pnUn

)] (16)

Comparing coefficients of terms with identical powers of p leads to

p0 : U0 = L−1

(
∞∑

n=0

anPn

)
,

p1 : U1 = L−1(f(r))− L−1

(
∞∑

n=0

anPn

)
− L−1N(U0(x)),

pn : Un = −L−1N(U0, U1, ..., Un−1) (n ≥ 2),

(17)

Now if we can solve these equations in such a way that U1 = 0, then Eq.
(17) results in U2 = U3 = · · · = Un = · · · = 0. Therefore, the exact solution may
be obtained by using

u(r) = lim
p→1

U(r, p) = U0 = L−1

( ∞∑
n=0

anPn

)
. (18)

3. A New Technique of the VIM and NHPM

In this section, we first propose a new technique of the functional itera-
tive methods VIM and NHPM for solving two-point boundary value problems
(BVPs), and then we compare their numerical results with those of the finite
difference method (FDM).

Example 3.1. We consider the one-dimensional two-point BVP in [16]:

u′′(x)− 40xu(x) = 2

u(−1) = u(1) = 0
(19)

Method 1 (VIM) : According to the VIM, we can construct a correct func-
tional as follows :

un+1(x) = un(x) +

∫ x

0

λ(ξ){u′′
n(ξ)− 40ξũn(ξ)− 2}dξ. (20)
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Using the variational theory and δũn = 0 in order to identify the Lagrange
multiplier λ(ξ), one has

δun+1(x) = δun(x) + δ

∫ x

0

λ(ξ){u′′
n(ξ)− 40ξũn(ξ)− 2}dξ

= δun(x) +

∫ x

0

λ(ξ)δu′′
n(ξ)dξ

= δun(x) + λ(x)δu′
n(x)− λ′(x)δun(x) +

∫ x

0

λ′′(ξ)δu′′
n(ξ)dξ

= (1− λ′(x))δun(x) + λ′(x)δun(x) +

∫ x

0

λ′′(ξ)δu′′
n(ξ)dξ = 0.

(21)

Then we have λ(ξ) = ξ−x, leading to the following variational iteration formula

un+1(x) = un(x) +

∫ x

0

(ξ − x){u′′
n(ξ)− 40ξun(ξ)− 2}dξ. (22)

We begin with an arbitrary initial approximation

u0(x) = a+ bx, (23)

where a and b are constants to be determined.
Using Mathematica with u0(x) = a+ bx, we can obtain

u1(x) = a+ bx+ x2 +
20a

3
x3 +

10b

3
x4

u2(x) = a+ bx+ x2 +
20a

3
x3 +

10b

3
x4 + 2x5 +

80a

9
x6 +

200b

63
x7

...

(24)

To determine a and b, we impose two boundary conditions u(−1) = u(1) = 0
on u10(x) which is not written here because of too many terms. Solving the
linear system u10(−1) = 0 and u10(1) = 0 by Mathematica, we can obtain an
approximate value of a and b :

a = − 626130931363188654943873502284743

5244299020941472717872569187197933
≈ −0.119393

b = − 9987416416946634206362873152999318

40646005877276390395049256331946249
≈ −0.245717.

(25)

Lastly, we substitute these approximate value of a and b into u10(x) which is
obtained by the iteration formula (22). The numerical results are listed in Table
1 under the column VIM.

Lu [16] has used u1(1) = 0 and u1(−1) = 0 to find approximate values of
a and b, which yields worse approximate solution than those in this paper. As
can be seen in Table 1, our technique of VIM performs much better than Lu [16].

Method 2 (NHPM) : By the NHPM, we construct the homotopy

(1− p) [U ′′(x)− u0(x)] + p [U ′′(x)− 40xU(x)− 2] = 0,

or equivalently,

U ′′(x) = u0(x)− pu0(x)− 40pxU(x) + 2p. (26)
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Applying the inverse operator L−1 =

∫ x

−1

∫ t

−1

(·)dτdt to both side of Eq. (26),

we have

U(x) =U(−1) + U ′(−1)(x+ 1) +

∫ x

−1

∫ t

−1

u0(τ)dτdt

− p

∫ x

−1

∫ t

−1

u0(τ)dτdt+ p

∫ x

−1

∫ t

−1

40τU(τ)dτdt+ p(x+ 1)2.

(27)

Suppose the solution U(x) of Eq. (27) is represented as

U(x) = U0(x) + pU1(x) + p2U2(x) + · · · , (28)

where Ui(x) are functions which should be determined. Substituting Eq. (28)
into Eq. (27) and comparing coefficients of terms with identical powers of p, we
obtain

p0 : U0(x) = U ′(−1)(x+ 1) +

∫ x

−1

∫ t

−1

u0(τ)dτdt

p1 : U1(x) = (x+ 1)2 −
∫ x

−1

∫ t

−1

u0(τ)dτdt+

∫ x

−1

∫ t

−1

40τU0(τ)dτdt

pn : Un(x) =

∫ x

−1

∫ t

−1

40τUn−1(τ)dτdt (n ≥ 2).

Since the boundary condition is given at x = −1, we can let

u0(x) =

∞∑
n=0

an(x+ 1)n. (29)

Let U ′(−1) = α, where α is a constant to be determined. Then we have

U0(x) = α(x+ 1) +

∫ x

−1

∫ t

−1

∞∑
n=0

an(τ + 1)ndτdt

= α(x+ 1) +

∞∑
n=0

an

(n+ 1)(n+ 2)
(x+ 1)n+2

(30)

and

U1(x) = (x+ 1)2 −
∫ x

−1

∫ t

−1

∞∑
n=0

an(τ + 1)ndτdt

+

∫ x

−1

∫ t

−1
40τ

[
α(x+ 1) +

∞∑
n=0

an

(n+ 1)(n+ 2)
(x+ 1)n+2

]
dτdt

= (x+ 1)2 −
∞∑

n=0

an

(n+ 1)(n+ 2)
(x+ 1)n+2

+
10

3
α(x+ 1)4 −

20

3
α(x+ 1)3

+
∞∑

n=0

40an

(n+ 1)(n+ 2)(n+ 4)(n+ 5)
(x+ 1)n+5

−
∞∑

n=0

40an

(n+ 1)(n+ 2)(n+ 3)(n+ 4)
(x+ 1)n+4

(31)
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Letting U1(x) = 0, one obtains

1− a0
2

= 0

a1 + 40α = 0

a2 − 40α+ 20a0 = 0

ak =
40ak−3

(k − 2)(k − 1)
− 40ak−2

(k − 1)k
(k ≥ 3).

(32)

From Eq. (32), it follows

a0 = 2

a1 = −40α

a2 = 40(α− 1)

ak =
40

k − 1

(
ak−3

k − 2
− ak−2

k

)
(k ≥ 3).

(33)

From Eqs. (30) and (33),

u(x) = U0(x) = α(x+ 1) +

∞∑
n=0

an
(n+ 1)(n+ 2)

(x+ 1)n+2. (34)

To find an approximate value of α, we apply the boundary condition u(1) = 0
which is never used in the above computational process. For this paper, the α
is approximated by solving the following equation

u15(1) = 0, (35)

where u15(x) = α(x+ 1) +

15∑
n=0

an
(n+ 1)(n+ 2)

(x+ 1)n+2. Solving Eq. (35) with

Mathematica, we can obtain approximate value of α

α ≈ 1.40778. (36)

Lastly, substituting this approximate value of α into Eq. (34) yields the
following approximate solution

û(x) =1.40778(x+ 1) + 2(x+ 1)2 − 56.3112(x+ 1)3 + 16.3112(x+ 1)4

+

∞∑
n=3

[(
an−3

n− 2
− an−2

n

)
40

(n− 1)(n+ 1)(n+ 2)

]
(x+ 1)n+2.

(37)

To increase the accuracy of α, we can use the condition uk(1) = 0 for values
of k which is greater than 15. This technique is never used before by any other
researchers.

In Tables 1 and 2, we provide numerical results obtained by the VIM, NHPM
and FDM as compared with those of Adomian for u = Φ12 in [2] because we can’t
find the exact solution of this problem, where FDM(n) means an approximate
solution obtained by the finite difference method with the mesh size h = 2

n . As
can be seen in Table 2, the VIM and NHPM are more accurate than FDM(n).
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Table 1. Numerical results for Example 3.1

x Φ12 VIM NHPM FDM(80) FDM(160)

-1.0 0.000000 2.28983× 10−16 0.000000 0.000000 0.000000
-0.8 0.254206 0.254206 0.254206 0.254677 0.254323
-0.6 0.296396 0.296396 0.296396 0.296369 0.296389
-0.4 0.146349 0.146349 0.146349 0.145632 0.146170
-0.2 -0.025886 -0.025886 -0.025886 -0.026773 -0.026107
0.0 -0.119393 -0.135649 -0.119393 -0.026773 -0.119551
0.2 -0.135649 -0.135649 -0.135649 -0.135973 -0.135729
0.4 -0.113969 -0.113969 -0.113969 -0.114092 -0.114000
0.6 -0.083321 -0.083322 -0.083322 -0.083349 -0.083328
0.8 -0.050944 -0.050944 -0.050944 -0.050931 -0.050941
1.0 0.000000 −9.1073× 10−17 0.000000 0.000000 0.000000

Table 2. Absolute errors of numerical methods for Example 3.1 compared to Φ12

x VIM NHPM FDM(80) FDM(160)

-1.0 0.000000 0.000000 0.000000 0.000000
-0.8 0.000000 0.000000 0.000471 0.000117
-0.6 0.000000 0.000000 0.000027 0.000007
-0.4 0.000000 0.000000 0.000717 0.000179
-0.2 0.000000 0.000000 0.000887 0.000221
0.0 0.000000 0.000000 0.000636 0.000158
0.2 0.000000 0.000000 0.000324 0.000080
0.4 0.000000 0.000000 0.000123 0.000031
0.6 0.000001 0.000001 0.000028 0.000007
0.8 0.000000 0.000000 0.000013 0.000003
1.0 0.000000 0.000000 0.000000 0.000000

Example 3.2. We consider the two-point BVP in [16]:

u′′(x) +
1

x
u′(x) + u(x)− 5

4
− x2

16
= 0

u′(0) = 0, u(1) =
17

16

(38)

Method 1 (VIM) : According to the VIM, we can construct a correct func-
tional as follows :

un+1(x) = un(x) +

∫ x

0

λ(ξ)

[
u′′(ξ) +

1

ξ
ũ′(ξ) + ũ(ξ)− 5

4
− ξ2

16

]
dξ. (39)
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Using the variational theory and δũn = 0 in order to identify the Lagrange
multiplier λ(ξ), one has

δun+1(x) = δun(x) + δ

∫ x

0

λ(ξ)

[
u′′(ξ) +

1

ξ
ũ′(ξ) + ũ(ξ)− 5

4
− ξ2

16

]
dξ

= δun(x) +

∫ x

0

λ(ξ)δu′′
n(ξ)dξ

= δun(x) + λ(x)δu′
n(x)− λ′(x)δun(x) +

∫ x

0

λ′′(ξ)δu′′
n(ξ)dξ

= (1− λ′(x))δun(x) + λ′(x)δun(x) +

∫ x

0

λ′′(ξ)δu′′
n(ξ)dξ = 0.

(40)

Then we have λ(ξ) = ξ−x, leading to the following variational iteration formula

un+1(x) = un(x) +

∫ x

0

(ξ − x)

[
u′′(ξ) +

1

ξ
u′(ξ) + u(ξ)− 5

4
− ξ2

16

]
dξ (41)

We begin with an arbitrary initial approximation

u0(x) = a, (42)

where a is a constant to be determined. Using Mathematica with u0(x) = a, we
can obtain

u1(x) = a+
a

2
x2 +

1

192
x4

u2(x) = a− 7

144
x2 +

a

24
x4 − 1

5760
x6

...

(43)

To determine a, we impose the boundary condition u(1) =
17

16
to u20(x) which

is not written here because of too many terms. Solving equation u20(1) =
17

16
with Mathematica, we can obtain an approximate value of a

a ≈ 1.06742. (44)

Lastly, we substitute this approximate value of a into u20(x) which is obtained
by the iteration formula (41). The numerical results are listed in Table 3 under
the column VIM.

Method 2 (NHPM) : By the NHPM, we construct the homotopy

(1− p) [U ′′(x)− u0(x)] + p

[
U ′′(x) +

1

x
U ′(x) + U(x)− 5

4
− x2

16

]
= 0,

or equivalently,

U ′′(x) = u0(x)− p

[
u0(x) +

1

x
U ′(x) + U(x)− 5

4
− x2

16

]
(45)
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Applying the inverse operator L−1 =

∫ x

0

∫ t

0

(·)dτdt, to both side of Eq. (45)

we have

U(x) = U(0) +

∫ x

0

∫ t

0

u0(τ)dτdt

− p

∫ x

0

∫ t

0

[
u0(τ) +

1

τ
U ′(τ) + U(τ)− 5

4
− τ2

16

]
dτdt

(46)

Suppose the solution U(x) of Eq. (46) is represented as

U(x) = U0(x) + pU1(x) + p2U2(x) + · · · , (47)

where Ui(x) are functions which should be determined. Substituting Eq. (47)
into Eq. (46) and comparing coefficients of terms with identical powers of p, we
obtain

p0 : U0(x) = U(0) +

∫ x

0

∫ t

0

u0(τ)dτdt

p1 : U1(x) = −
∫ x

0

∫ t

0

[
u0(τ) +

1

τ
U ′

0(τ) + U0(τ)−
5

4
− τ2

16

]
dτdt

pn : Un(x) = −
∫ x

0

∫ t

0

[
1

τ
U ′

n−1(τ) + Un−1(τ)

]
dτdt (n ≥ 2).

Let u0(x) =
∞∑

n=0

anx
n, U ′(0) = u′(0) = 0 and U(0) = α, where α is a constant

to be determined. Then we have

U0(x) = α+

∫ x

0

∫ t

0

∞∑
n=0

anτ
ndτdt = α+

∞∑
n=0

an
(n+ 1)(n+ 2)

xn+2, (48)

U1(x) = −
∫ x

0

∫ t

0

[ ∞∑
n=0

anτ
n
+

1

τ

∞∑
n=0

an

n + 1
τ
n+1

+ α +

∞∑
n=0

an

(n + 1)(n + 2)
τ
n+2 −

5

4
−

τ2

16

]
dτdt

= −
∞∑

n=0

an

(n + 1)2
x
n+2 −

1

2
αx

2 −
∞∑

n=0

an

(n + 1)(n + 2)(n + 3)(n + 4)
x
n+4

+
5

8
x
2
+

1

192
x
4

=

(
5

8
−

1

2
α − a0

)
x
2 −

a1

4
x
3
+

(
1

192
−

a2

9
−

a0

24

)
x
4

−
∞∑

n=0

1

n + 4

(
an+3

n + 4
+

an

(n + 2)(n + 3)(n + 5)

)
x
n+5

.

(49)

Letting U1(x) = 0, one obtains

5

8
− 1

2
α− a0 = 0,

a1

4
= 0

1

192
− a2

9
− a0

24
= 0

1

k + 1

(
ak

k + 1
+

ak−2

(k − 1)k(k + 2)

)
= 0 (k ≥ 3).

(50)
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From Eq. (50),

a0 =
5

8
− 1

2
α

a1 = 0

a2 =
3

64
− 3

8
a0

ak = − ak−2(k + 1)

(k − 1)k(k + 2)
(k ≥ 3).

(51)

From Eqs. (48) and (51),

u(x) = U0(x) = α+

∞∑
n=0

an

(n+ 1)(n+ 2)
xn+2

= α+
a0

1 · 2x
2 +

a1

2 · 3x
+ a2

3 · 4x
3 + · · ·

(52)

To find an approximate value of α, we apply the boundary condition u(1) =
17

16
which is never used in the above computational process. For this paper, the α
is approximated by solving the following equation

u15(1) =
17

16
, (53)

where u15(x) = α +
15∑

n=0

an
(n+ 1)(n+ 2)

xn+2. Solving Eq. (53) with Mathemat-

ica, we can obtain an approximate value of α = 1. Substituting this approximate
value of α into Eq. (52), one obtains

û(x) = U0(x) = 1 +

∞∑
n=0

an

(n+ 1)(n+ 2)
xn+2

= 1 +
a0

1 · 2x
2 +

a1

2 · 3x
+ a2

3 · 4x
3 + · · ·

= 1 +
a0

2
x2 = 1 +

1

16
x2,

(54)

which is the exact solution of BVP (38).
In Tables 3 and 4, we compare the numerical results obtained by VIM, NHPM

and FDM with those of the exact solution, where FDM(n) means an approximate
solution obtained by the finite difference method with the mesh size h = 1

n . As
can be seen in Table 4, NHPM is more accurate than VIM and FDM, and our
technique of VIM is more accurate than the VIM in Lu [16].

4. Conclusion

In this paper, we proposed a new technique of the VIM and NHPM for solving
two-point boundary value problems. Our technique of VIM performed better
than Lu’s technique in [16]. Our technique of NHPM also performed very well
as compared with FDM (See Tables 1 to 4). Therefore, we conclude that our
technique of VIM and NHPM are very effective, reliable and powerful methods
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Table 3. Numerical results for Example 3.2

x Exact Solution VIM VIM(Lu [16]) NHPM FDM(80) FDM(160)

0.0 1 1.06742 0.8646 1 1.00003 1.00001
0.1 1.00063 1.06742 0.8665 1.00063 1.00064 1.00063
0.2 1.0025 1.06742 0.8723 1.0025 1.00251 1.0025
0.3 1.00563 1.06739 0.8820 1.00563 1.00563 1.00563
0.4 1.01 1.0673 0.8956 1.01 1.01001 1.01
0.5 1.01563 1.06713 0.9131 1.01563 1.01563 1.01563
0.6 1.0225 1.06681 0.9346 1.0225 1.0225 1.0225
0.7 1.03063 1.06627 0.9603 1.03063 1.03063 1.03063
0.8 1.04 1.06745 0.9901 1.04 1.04 1.04
0.9 1.05063 1.06423 1.0241 1.05063 1.05063 1.05063

Table 4. Absolute errors of numerical methods for Example 3.2
compared to the exact solution

x VIM VIM(Lu [16]) NHPM FDM(80) FDM(160)

0.0 0.0674236 0.1354 0.0 3.24313× 10−5 8.95455× 10−6

0.1 0.0667981 0.13413 0.0 7.64539× 10−6 1.83782× 10−6

0.2 0.0649161 0.1302 0.0 9.16605× 10−6 2.29183× 10−6

0.3 0.0617607 0.12363 0.0 2.05549× 10−6 3.23593× 10−6

0.4 0.0573034 0.1144 0.0 5.49701× 10−6 1.37439× 10−6

0.5 0.0515036 0.10253 0.0 7.60917× 10−7 3.94013× 10−6

0.6 0.0443081 0.0879 0.0 3.17265× 10−6 7.93232× 10−7

0.7 0.03565 0.07033 0.0 2.75834× 10−6 4.43954× 10−6

0.8 0.0254474 0.0499 0.0 1.41426× 10−6 3.53594× 10−7

0.9 0.0136025 0.02653 0.0 4.32888× 10−6 4.83221× 10−6

for solving two-point boundary value problems. All numerical computations in
this paper were performed using Mathematica.
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