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QUASILINEARIZATION FOR SECOND ORDER
SINGULAR BOUNDARY VALUE PROBLEMS
WITH SOLUTIONS IN WEIGHTED SPACES

J. VASUNDHARA DEVI AND A. S. VATSALA

ABSTRACT. In this paper, we develop the method of yuasilineariza-
tion combined with the method of upper and lower solutions for
singular second order boundary value problems in weighted spaces.
The sequences constructed converge uniformly and monotonically
to the unique solution of the second singular order boundary value
problem. Further we prove the rate of convergence is quadratic.

1. Introduction

The study of second order singular mixed boundary value problem
has received much attention due to its application [3]. Also in [3] the
motivation to look for existence of solutions to singular boundary value
problems in Weighted Banach Spaces is presented. In this paper, we
develop the method of generalized quasilinearization [1, 4] to singular
boundary value problems in weighted spaces using upper and lower so-
lutions. The method yields two monotone sequences which are solutions
of linear singular boundary value problems in weighted spaces. Further,
the sequences converge quadratically to the unique solution of the non-
linear singular boundary value problem in weighted spaces. For this
purpose, we have developed a comparison theorem [2] for second order
singular boundary value problems. The results developed here paves way
to study generalized quasilinearization method for singular problems in
many different settings.
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2. Preliminaries

Consider the singular boundary value problem (SBVP) of 2nd order

{ — () = f@t, " 1y), 0<t<1

(21) y(1) = u, tlir(g " ly(t) =y with n>2

where f : I x R — R is continuous, I = [0, 1].

DEFINITION 2.1. By a solution of the SBVP (2.1) we mean a function
y € C?[(0, 1], R) with t*~y € C[[0, 1], R], and t*y’ € C[[0, 1], R] and
(t»1y)" € L'[0, 1] which satisfies the differential equation and the given
boundary conditions.

Note: Whenever we write y(t) is a solution of the SBVP (2.1) we
mean that t"~1y(t) is a solution of SBVP (2.1). Similar notation is used
for lower and upper solutions.

Throughout this paper, we work in the Banach space of functions
E={yeC'[(0,1], R|z"'y| € C[[0, 1], R] and |z"y'| € C[0, 1], R}}

with the norm
lylo = Max { sup |z"'y(z)|, sup lw"y'(w)l}-
z€[0,1] z€(0,1)

We now state the existence theorem for (2.1) from [3] which we need in
our work.

THEOREM 2.1. Assume
(i) f:[0, 1] x R — R is continuous.
(ii) There exist an upper solution § and a lower solution o of SBVP
(2.1) with £ a(t) < " B(t) on (0, 1), a(1) <y < B(1) and

tlirgl t"ta(t) <y < lim t"16(t).
—0T t—0+

Then the SBVP (2.1) has a solution y € E with t*a(t) <" 'y(t) <
t"18(t) for t € [0, 1], where

y(t) = — 0+ #r — E fy £ (s, 7My(s)) ds

: A (n—1)t"—
L [i 551 (s, 5" y(s)) ds.

Tn-1Jt st

(2.2)
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3. Main results

We first proceed to prove the comparison theorem which is an essential
tool in our work.

THEOREM 3.1. Suppose that there exist y, z € E such that

(4 0y n-1
(3.1) { (¢ y)/ < f(t ] Y)
— (") > f(t, " 12)
hold with
o (e s
and y(1) < z(1).

Further, assume that f : [0, 1] x R — R is continuous and satisfies

(3.3) f@ ) = f (¢ " Ty) < —Lt" Yz —y),

whenever, x > y and L > 0.
Then t"ly(t) < t""12(¢) on [0, 1].

Proof. Suppose the conclusion fails, i.e. " ly(t) > t"12(t) at some
t € (0, 1). Then by continuity, we must have a local maximum at ¢y €
(0, 1). This implies that

(3.4) [ty —2)] =0att=t
and
(3.5) [t" Yy —2)]"<0att=t.

Now considering the relation (3.5), and differentiating it twice and sim-
plifying using the relation (3.4), we obtain

0 > [t"'(y—2)]"
= @) -1 @)
which yields the inequality
—% "y > —% () att=toe (0, 1]
Using the relation (3.1) in the above inequality at t = ¢y, we get
£ (to, t57'y) = = (65Y) = = (852) 2 f (o, t57"2)
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which implies,
0< f(to, tg'y) — f(to, tg712) < —Ltg™'(y—2) <0
a contradiction. Thus the proof is complete. a

We next present the quasilinearization method which guarantees qua-

dratic convergence of a sequence of functions to a solution g of the given
SBVP.

THEOREM 3.2 Assume that
(i) ao, By € E are lower and upper solutions of the SBVP (2.1) such that
t"ap(t) < " 16y(t) on I with

. n—1 < < i n—1
(3.6) Jom 7 ao(t) S 30 < lim 1" o(t)
and  ap(1) < y1 < Bo(1);

(i) f(¢, t"'y) is convex (a) f. exists, continuous and f, (t,u) >0 for
every t,u on (Q, where (0 is given by

Q={tu);0<t<1, and ¢g <u < Go};

(iii) fu (¢, " 'y) <0 on .
Then there exists monotone sequences {t" *ay(t)}, {t"'B:(t)} with
" lag(t) < " Tlaa(t) < - ST (t) S ETHGL(Y)
< SR S B (8),t € [0, 1
which converges uniformly and quadratically to the unique solution
t"~1 y(t) of the SBVP (2.1).
Proof. Integrating the assumption (ii) twice, we get

B7)  f( ) > YY)+ L T Y (e -yt e >y
Consider the singular BVP (SBVP)

N\
— (t"al) =F (t, " lag: ao)

(3.8)
with a;(1) = y; and tlirgi t" oy (t) = yo,

where F (t, " lay, ap) = f (¢, " lag) + fu (t, " ap) (01 — ap) £
Since ap and (3, are lower and upper solutions of SBVP (2.1) with

" lag(t) < " 16o(t),
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using the relation (3.7), we get

- (t”a' )I
)

IA

f (ta tn_1a0)
= F(t, t"‘lao; a())

and

v

; !
—(8) = ()
F (" 0) + fu(t, "7 ) (Bo — o) "7
= F(t, t""Bo; o).
The above two inequalities, along with relation (3.6) imply that o9 and
Bo are lower and upper solutions for the SBVP (3.8). Furthermore, ap
and f, satisfy the hypothesis of Theorem 2.1, hence we can conclude

that there exists a function say a;(t) € E such that a;(t) is a solution
of the SBVP (3.8) with

" lag(t) < " lon(t) <t G(t),  te€l0, 1].

We now claim that this solution is unique. The proof is as follows. If
possible, suppose that @j (t) is another solution of the SBVP (3.8). Then

{ —(t"ar’ (¢)) = F (t, t""a; )

with @7(l) =y and lim " lan(t) = .

v

(3.9)

Now writing (3.8) and (3.9) as inequalities

— (t"ar’) > F (t, t"""an; o)
(3.10) and
— (t"e}) < F (¢, " oy ap)

along with boundary conditions and observing that the function F' sat-
isfies the condition (3.3), we apply the comparison theorem and obtain
the relation " 'aq(t) > t" s (t), t € [0, 1}.

Now reversing the above inequalities in (3.10) and applying the com-
parison theorem again, we get

t"lag(t) < " lay(t), te o, 1).

The above inequalities together imply the uniqueness of the solution
t"1a,(t) of the SBVP (3.8). We proceed next to show that there exists
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a unique solution g (t) for the SBVP

—(*B}) =G (¢, t"'By; o, So)

with  lim " 1Bi(t) = yo, (1) =
such that "oy (t) < t"16,(t) < t"16,(t); where G (¢, t" 1815 o, Bo) =
f ¢, Bo) + fult, t* ') (B — Bo) t" .

The fact that ag, By are lower and upper solutions of SBVP (2.1),
together with the relation (3.7) imply that

—(t"a) < f (t, t" 1)
< F(E 7 6) — fu (b, 7 ) (Bo — ) ¢
= f(t "7 60) + fu (t, " ) (00 — Bo) ™
G (t, " ag; ag, ,Ho)

(3.11)

and
(~t"6p) = f(t """ fo)
G (t, "' o; o, Bo) -
The above inequalities, along with relation (3.6) yield that oy, By are also
lower and upper solutions for the SBVP (3.11). Now using Theorem
2.1 we get the existence of a solution of SBVP (3.11). The proof of
uniqueness is similar to the uniqueness proof of the solution of the SBVP

(3.8). Thus we have 8y € E such that f§;(¢) is the unique solution of
SBVP (3.11).

The proof of t"a;(t) < t""15;(t) is as follows.
We know that t" oy < t""! ;. Using it in relation (3.7), we get
— (")) = F(t t" a5 a)
= f(t t" o) + fu (t, " o) (a1 — ag) 7
< f(t 7 ) — fult, 7 o) (B — o)™
+fu(t, ") (o — ag)t™ !
= f(t, "7 Bo) + fult, t" o) (o — Bo)t™ !
= G(t, t" tay; op, Bo).

Since G satisfies the relation (3.3}, the above inequality together with the
SBVP (3.11) and the boundary conditions satisfy the hypothesis of the
comparison theorem. Hence, we have t"!a,(t) < t"714,(t), t € [0, 1].
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Working in a similar fashion as above, we now proceed to show that
for any k > 1

" o (t) < " Mg (8) < T Bran (B) < V1B (2),
where oy (t), Bx(t) are known.
Consider the SBVP
—(t"0y) = F(t, t" oy, o)
(3.12) {with tll.%i t" a1 (t) = yo and apy(1) =

where

F(t, " oy, ai) = [t 77 ag) + fult, 27 o) (asn — ax)t™

Using the fact that t"la_; < t" lo4 in the relation (3.7) and sub-
stituting in the equality below, we get

—(t"0}) = F(t, t" ‘o, ox_1)
Ft, " Yags) + fult, " Togor) (ag — o1 )™}
< f@t o)
= F(t, t" ‘o, ap).

Since t" lag < t"log and f, is an increasing function in u, we have

fult, " ag) < £, (t, t*ay) . Using this in relation (3.7) and as t" oy, <
t""18, < t"18,_1, the equality below reduces to
—(t"B) = G(t, t"'By; a0, Br-1)
£t 7 Bper) + fults €7 ) (B — Br-)t™
ft, " ag) + fult, ") (Beor — )t !
—fults £ a0) (Be-1 — B)t™
F@t, 7 o) + fult, 7 o) (B — ar)t™ !
F(t, t" B o).

v

Thus we get the inequalities

—(t"a}) < F(t, " oy o)
and

—(t"By) = F(t, "7 By; aw)
along with the boundary conditions.
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Now discussing as earlier, we obtain that there is a unique solution
ai41(t) € E for the SBVP (3.12) such that

(3.13) " o (t) < " lagpa(t) < tVIB(t), t € [0, 1.

Next consider the SBVP
{ —(tnﬁllcﬂ)l = G(t: tn_lﬁlﬂ-l; Qp, ﬂk)

(3.14) with  lim kmt"™ G (t) = yo and Bea(t) = 1.

Again using the relation (3.7), f, is increasing in u, and the inequal-
ities "oy < t"logy < "7 lay < V1B < B4y < 7716 in the
SBVP (3.14), we deduce as follows

—(t"B) = G(t, t"'Bx; o, Bi1)
= f(t, " Bro1) + fult, 7 a0) (B — Bror )t
F& 7 8e) + fult, 771 Be) (Beer — Be)t™ !
— fu(t, " ) (Br—1 - Bi)t"!
Ft 7B
G(t, t"'Br; a0, Br)-

v

Il

Now considering
—(t"ay) = F(t, " oy, ax_y)
Flt " apor) + fult, 7 oot (@ — agpy )t
@& 718 + fult, " tag_y) x
[—(Bk — ag-1)t" + (ay, — o1 )t
F 7 B) — fult, 7 oesr) (B — e )t™?
£, 71 Bi) = fult, £ a0) (B — o)t
= f@, t"7'B) + fult, " ag)(ax — Bi)t"
= G(t, " tay; ag, Br).
Thus we get the inequalities

~(t"6.) > G(t, t"'Bx; o, Br)

— (") < G(¢, " s o, Br)

together with the boundary conditions.
Now using the existence Theorem 2.1, we conclude that B, (t) is the
unique solution of (3.4) such that " !ay(t) < t" 16k, (t) < t* 16, (2).

IA

INA
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Now consider the SBVPs (3.13) and (3.14). Working in a simi-
lar fashion as in the proof of " lay(t) < t"'By(t) we can show that
" a1 (t) <tV Brpa(t)-

Thus we have proved

=lag(t) <t len(t) <0 <o () <O Ba(t)
(3.15)
<< TIB(E) < 1B (E), t e (O, 1]

These monotone sequences {t" ‘ay.1(t)} and {t"~ 1,8k+1( )} are both
bounded and hence they converge to t"!p(t) and t" 'y(t) point-wise
respectively.

Next we show that {¢t"Lay.1(t)} converges uniformly to ¢*~*p(t). The
proof for the convergence of the other sequence is similar.

Using the SBVP (3.12), the relation (3.15) and the integral equa-
tion (2.2) it is easy to observe that { t"~! axy1 (£) 3 {at o (t)) 1,

{trag 1 ( (t)},and {(t"a 1) } are uniformly bounded sequences. Hence

by Ascoli’s theorem, we have that the sequence {t" ' o41(2)} {tha,1(t)}
have uniform convergent subsequences. Since {t"~ Yog41(t)} is @ mono-
tone sequence in E, it follows that the sequence is uniformly convergent
in E. Thus {t"~ 1ak+1( )} converges uniformly to a solution t*~*p(t) of
the SBVP (2.1).

We now claim that this convergence is quadratic in nature. For proof,
set

pree(t) = p(t) — ara(t).

Then
— (("Dhar (1))
= - (t" ’(t)) (t"ak+1(t))'
= f ( ) (t tn~ ) - fu (t, t"_lak) (ak+1 - ak) tn—l
= Fult, ") (0 — an)t™ = fu (b 7 ) (@kn —ay)t"
< fult t" )(p a)t™! = fult, 7 ) (p — et
+fult, " k) (p — ak+1)t” '
= fuu(t7 tn_lf) [(p - ak) (tn—l)] + fu(ta tn_lak) (P - ak+l) tn_l
< —Mpen(®)t" + N [pe(t)t"]"
< —Mpea(®)" + N pilg,



832 J. Vasundhara Devi and A. S. Vatsala

where t"1¢ € (t" 'y, t"!p]. Thus we have the inequality
(3.16) — (t"p§€+1)' < —Mpea (Ot + N |pk|(2).

Clearly given M, N and lpk[g, there exist z € R* such that
(3.17) 0=—Mzt""+ N|pl2.
Now using the comparison theorem [2] for (3.16) and (3.17), we get
Pt < 2™t e |0, 1).

(i.e.)

(p(t) = s 77 < 3 okl

which yields

N
lp = erily < 3 Ipxls

This proves the quadratic convergence of the sequence {t" lay.(t)}.
Similarly, we can prove the quadratic convergence of the sequence { A
Br+1 (t) } to the solution of the SBVP (2.1). Further, it is noted that
these sequences converge to the unique solution of (2.1) from hypothesis

(iii) and the comparison Theorem 3.1. Thus the proof of the theorem is
complete. O
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