• Title/Summary/Keyword: Bivariate Distribution

Search Result 210, Processing Time 0.021 seconds

ON BAYESIAN ESTIMATION AND PROPERTIES OF THE MARGINAL DISTRIBUTION OF A TRUNCATED BIVARIATE t-DISTRIBUTION

  • KIM HEA-JUNG;KIM Ju SUNG
    • Journal of the Korean Statistical Society
    • /
    • v.34 no.3
    • /
    • pp.245-261
    • /
    • 2005
  • The marginal distribution of X is considered when (X, Y) has a truncated bivariate t-distribution. This paper mainly focuses on the marginal nontruncated distribution of X where Y is truncated below at its mean and its observations are not available. Several properties and applications of this distribution, including relationship with Azzalini's skew-normal distribution, are obtained. To circumvent inferential problem arises from adopting the frequentist's approach, a Bayesian method utilizing a data augmentation method is suggested. Illustrative examples demonstrate the performance of the method.

Some counterexamples of a skew-normal distribution

  • Zhao, Jun;Lee, Sang Kyu;Kim, Hyoung-Moon
    • Communications for Statistical Applications and Methods
    • /
    • v.26 no.6
    • /
    • pp.583-589
    • /
    • 2019
  • Counterexamples of a skew-normal distribution are developed to improve our understanding of this distribution. Two examples on bivariate non-skew-normal distribution owning marginal skew-normal distributions are first provided. Sum of dependent skew-normal and normal variables does not follow a skew-normal distribution. Continuous bivariate density with discontinuous marginal density also exists in skew-normal distribution. An example presents that the range of possible correlations for bivariate skew-normal distribution is constrained in a relatively small set. For unified skew-normal variables, an example about converging in law are discussed. Convergence in distribution is involved in two separate examples for skew-normal variables. The point estimation problem, which is not a counterexample, is provided because of its importance in understanding the skew-normal distribution. These materials are useful for undergraduate and/or graduate teaching courses.

THE BIVARIATE F3-BETA DISTRIBUTION

  • Nadarajah Saralees
    • Communications of the Korean Mathematical Society
    • /
    • v.21 no.2
    • /
    • pp.363-374
    • /
    • 2006
  • A new bivariate beta distribution based on the Appell function of the third kind is introduced. Various representations are derived for its product moments, marginal densities, marginal moments, conditional densities and conditional moments. The method of maximum likelihood is used to derive the associated estimation procedure as well as the Fisher information matrix.

A Family of Truncated Skew-Normal Distributions

  • Kim, Hea-Jung
    • Communications for Statistical Applications and Methods
    • /
    • v.11 no.2
    • /
    • pp.265-274
    • /
    • 2004
  • The paper extends earlier work on the skew-normal distribution, a family of distributions including normal, but with extra parameter to regulate skewness. The present work introduces a singly truncated parametric family that strictly includes a truncated normal distribution, and studies its properties, with special emphasis on the relation with bivariate normal distribution.

Some properties of reliability, ratio, maximum and minimum in a bivariate exponential distribution with a dependence parameter

  • Lee, Jang Choon;Kang, Jun Ho
    • Journal of the Korean Data and Information Science Society
    • /
    • v.25 no.1
    • /
    • pp.219-226
    • /
    • 2014
  • In this paper, we derived estimators of reliability P(Y < X) and the distribution of ratio in the bivariate exponential density. We also considered the means and variances of M = max{X,Y} and m = min{X,Y}. We finally presented how E(M), E(m), Var(M) and Var(m) are varied with respect to the ones in the bivariate exponential density.

Moment of the ratio and approximate MLEs of parameters in a bivariate Pareto distribution

  • Kim, Jungdae
    • Journal of the Korean Data and Information Science Society
    • /
    • v.23 no.6
    • /
    • pp.1213-1222
    • /
    • 2012
  • We shall derive the moment of the ratio Y/(X + Y) and the reliability P(X < Y ), and then observe the skewness of the ratio in a bivariate Pareto density function of (X, Y). And we shall consider an approximate MLE of parameters in the bivariate Pareto density function.

System Reliability Estimation in Bivariate Pareto Model Affected by Common Stress : Bivariate Random Censored Data Case

  • Cho, Jang-Sik
    • Journal of the Korean Data and Information Science Society
    • /
    • v.16 no.4
    • /
    • pp.791-799
    • /
    • 2005
  • We consider two components parallel system in which the lifetimes have the bivariate Pareto model with bivariate random censored data. We assume that bivariate Pareto model is affected by common stress which is independent of the lifetimes of the components. We obtain estimators for the system reliability based on likelihood function and relative frequency. Also we construct approximated confidence intervals for the reliability based on maximum likelihood estimator and relative frequency estimator, respectively. Finally we present a numerical study.

  • PDF

A Study on Estimators of Parameters and Pr[X < Y] in Marshall and Olkin's Bivariate Exponential Model

  • Kim, Jae Joo;Park, Eun Sik
    • Journal of Korean Society for Quality Management
    • /
    • v.18 no.2
    • /
    • pp.101-116
    • /
    • 1990
  • The objectives of this thesis are : first, to estimate the parameters and Pr[X < Y] in the Marshall and Olkin's Bivariate Exponential Distribution ; and secondly, to compare the Bayes estimators of Pr[X < Y] with maximum likelihood estimator of Pr[X < Y] in the Marshall and Olkin's Bivariate Exponential Distribution. Through the Monte Carlo Simulation, we observed that the Bayes estimators of Pr[X < Y] perform better than the maximum likelihood estimator of Pr[X < Y] and the Bayes estimator of Pr[X < Y] with gamma prior distribution performs better than with vague prior distribution with respect to bias and mean squared error in the Marshall and Olkin's Bivariate Exponential Distribution.

  • PDF

Cost Analysis on Warranty Policies Using Freund's Bivariate Exponential Distribution

  • Park, Minjae;Kim, Jae-Young
    • Journal of Korean Society for Quality Management
    • /
    • v.42 no.1
    • /
    • pp.1-14
    • /
    • 2014
  • Purpose: In this paper, the minimal repair-replacement warranty policy is used to carry out a warranty cost analysis with warranty servicing times and failure times that are statistically correlated to bivariate distributions. Methods: Based on the developed approach by Park and Pham (2012a), we investigate the property of the Freund's bivariate exponential distribution and obtain the number of warranty services using the field data to conduct the warranty cost analysis. Results: Maximum likelihood estimates are presented to estimate the parameters and the warranty model is investigated using a Freund's bivariate exponential distribution. A numerical example is discussed to deal with the applicability of the developed approach in the paper. Conclusion: A novel approach of analyzing the warranty cost is proposed for a product in which failure times and warranty servicing times are used simultaneously to investigate the eligibility of a warranty claim.

System Reliability From Stress-Strength Relationship in Bivariate Pareto Distribution

  • Cho, Jang-Sik;Cho, Kil-Ho;Cha, Young-Joon
    • Journal of the Korean Data and Information Science Society
    • /
    • v.14 no.1
    • /
    • pp.113-118
    • /
    • 2003
  • In this paper, We assume that strengths of two components system follow a bivariate pareto distribution. And these two components are subjected to a common stress which is independent of the strength of the components. We obtain maximum likelihood estimator(MLE) for the system reliability from stress-strength relationship. Also we derive asymptotic properties of the MLE and present a numerical study.

  • PDF