DOI QR코드

DOI QR Code

Moment of the ratio and approximate MLEs of parameters in a bivariate Pareto distribution

  • Kim, Jungdae (Department of Computer Information, Andong Science College)
  • Received : 2012.08.27
  • Accepted : 2012.10.22
  • Published : 2012.11.30

Abstract

We shall derive the moment of the ratio Y/(X + Y) and the reliability P(X < Y ), and then observe the skewness of the ratio in a bivariate Pareto density function of (X, Y). And we shall consider an approximate MLE of parameters in the bivariate Pareto density function.

Keywords

References

  1. Abramowitz, M. and Stegun, I. A. (1970). Handbook of mathematical functions, Dover Publications Inc., New York.
  2. Ali, M. M., Pal, M. and Woo, J. (2010). Estimation of P(Y < X) when X and Y belong to di erent distribution families. Journal of Probability and Statistical Science, 8, 19-33.
  3. Arnold, B. C. (1983). Pareto distributions, International Co-operative Publishing House, Maryland.
  4. Balakrishnan, N. and Cohen, A. C. (1991). Order statistics and inference, Academic Press, Inc., New York.
  5. Chacko, M. and Thomas, P. Y. (2007). Estimation of a parameter of bivariate Pareto distribution by ranked set sampling. Journal of Applied Statistics, 34, 703-714. https://doi.org/10.1080/02664760701236954
  6. Gradshteyn, I. S. and Ryzhik, I. M. (1965). Tables of integrals, series, and products, Academic Press, New York.
  7. Johnson, N. L., Kotz, S. and Balakrishnan, N. (1994). Continue univariate distribution, Houghton Miin Co., Boston.
  8. Moon, Y. G. and Lee, C. S. (2009). Inference on reliability P(Y < X) in the gamma case. Journal of the Korean Data & Information Science Society, 20, 219-223.
  9. Moon, Y. G., Lee, C. S. and Ryu, S. G. (2009). Reliability and ratio in exponentiated complementary power function distribution. Journal of the Korean Data & Information Sciences Society, 20, 955-960.
  10. Neter, J. and Wasserman, W. (1974). Applied linear statistical models, Richard D. Irwin Inc., Homewood, Illinois.
  11. Lee, J. C. and Lee, C. S. (2010). Reliability and ratio in a right truncated Rayleigh distribution. Journal of the Korean Data & Information Science Society, 21, 195-200.
  12. Oberhettinger, F. (1974). Tables of Mellin transforms, Springer-Verlag, New York.
  13. Pal, M., Ali, M. M. and Woo, J. (2005). Estimation and testing of P(Y < X) in two parameter exponential distributions. Statistics, 39, 415-428. https://doi.org/10.1080/02331880500274031
  14. Raqab, M. Z., Madi, M. T. and Kundu, D. (2007). Estimation of P(Y < X) for a 3-parameter generalized exponential distribution. Communications in Statistics-Theory and Methods, 37, 2854-2864.
  15. Son, H. and Woo, J. (2009). Estimations in a skewed double Weibull distribution. Communications of the Korean Statistical Society, 16, 859-870. https://doi.org/10.5351/CKSS.2009.16.5.859
  16. Woo, J. (2007). Reliability in a half-triangle distribution and a skew-symmetric distribution. Journal of the Korean Data & Information Sciences Science Society, 18, 543-552.
  17. Xekalaki, D. and Dimaki, C. (2004). Characterizations of bivariate Pareto Yule distribution. Communications in Statistics-Theory and Methods, 33, 3033-3042. https://doi.org/10.1081/STA-200038880

Cited by

  1. Some properties of reliability, ratio, maximum and minimum in a bivariate exponential distribution with a dependence parameter vol.25, pp.1, 2014, https://doi.org/10.7465/jkdi.2014.25.1.219
  2. Saddlepoint approximation for distribution function of sample mean of skew-normal distribution vol.24, pp.6, 2013, https://doi.org/10.7465/jkdi.2013.24.6.1211