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Abstract

In this paper, we derived estimators of reliability P(Y < X) and the distribution of
ratio in the bivariate exponential density. We also considered the means and variances
of M = max{X,Y} and m = min{X,Y}. We finally presented how E(M), E(m),
Var(M) and Var(m) are varied with respect to the ones in the bivariate exponential
density.
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1. Introduction

In reliability studies of mechanical components, dependence between two components
occurs quite often as in Saunders (2007). Among two identical component functions, if some
system at least has one of those, then that system has a functional correlation between those
system components. Initially, we assume the marginal life distribution of the two components
has the independent exponential function, Exp(1/A) with mean parameter 1/\. Failure of
one changes the life distribution of the other, Exp(1/A).

Especially if § = 1, the two components in function are independent. For 6 > 1, if the
workload of one component is increased, then the mean life of the other will be decreased.

Let (X,Y) denote the life times of the two components having a bivariate exponential
model. Then, the joint probability function of (X,Y") can be expressed as,

fxv(z,y) = 207\% exp(—2\z — \y) for x,y > 0, (1.1)

where 6 > 0 and A > 0. Here 0 is called the dependence parameter in Cho et al. (2006).
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The most well known bivariate exponential distribution was derived by Marshall et al.
(1967) by considering shock models. Iyer et al. (2002) presented a bivariate exponential
distribution derived from packet communication networks.

In the case X and Y belong to the different distribution families, then Ali et al. (2010a,
2010b) studied the ratio of two independent exponential Pareto variables, and considered the
estimation of P (Y < X). Hakamipour et al. (2011) and Kim (2012) considered extremes,
moments of ratio, and the approximate the maximum likelihood estimator (MLE) of pa-
rameters having bivariate Pareto distribution. Ker (2005) studied the maximum of bivariate
normal random variables.

Therefore, we have some motivations of considering the reliability estimation of P (Y < X),
the distribution of the ratio Y/(X +Y'), and maximum and minimum properties having the
bivariate exponential density (1.1).

In this paper, we shall derive estimators of the reliability P(Y < X)), and ratio distribution
in the bivariate exponential density (1.1). By providing the numerical values of mean, vari-
ance, and coefficients of skewness, we observe the several trends for the density of the ratio
R. We also consider the means and variances of M = max{X,Y} and m = min {X,Y}. We
finally present how E(M), E(m), Var(M) and Var(m) are varied with respect to the ones
in the bivariate exponential density (1.1).

2. Estimation of reliability P(Y < X)
For life times of the two components (X, Y") having the bivariate exponential density (1.1),

reliability P(Y < X) is considered as follows.

Proposition 2.1 Let (X,Y) be two components of life times having bivariate exponential
density (1.1). Then the reliability R(p) = P(Y < X) = 1/(1 + p) is a monotone decreasing
function of p = 2/6.

From Proposition 2.1, inference on R(p) is equivalent to one on p, since R(p) is a monotone
function of p (McCool, 1991). Hence it is sufficient to consider an estimation of p instead of
estimating R(p).

Let (X1,Y1),(Xo,Ys), ..., (X,,Y,) be random samples in the bivariate exponential density
(1.1). Then MLE 4 of p is

p=> V> X, (2.1)
=1 =1

In order to find mean and variance of p, we can show the as follows.

Lemma 2.1 Let X be a gamma random variable having mean «f and variance a32. If
o >2, then E(1/X) =1/{(a—1)8} and E(1/X?) =1/ {(a —1)(a — 2)?}.
From Lemma 2.1 and (2.1), it is possible to derivate as follows.
n
E(p) = .
(p) = ——p

From (2.2), an unbiased estimator p of p is given by as follows.

ﬁ=”;1<§jm/ﬁjxi>. (2.3)
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)

If we choose a constant “c = ¢y” satisfying the following,

CZY;'/ZXi_p] =F COZYi/ZXi—P] )
=1 =1 =1 i1

min F
C

then from Lemma 2.1, constant ¢g is derivated as follows.
co=(n—-2)/(n+1).

If we define p as follows,

ﬁ:

n_2 n n

then p has minimum mean squared error among estimators in {c¢) ;. , ¥;/ > " | X;|e >0}.
Since inference on R(p) is equivalent to inference on p (McCool, 1991), we obtain the propo-
sition as follows.

Proposition 2.2 Let (X1,Y7),(X2,Y2), -+, (X,,Y,) be random samples in the bivariate
exponential density (1.1). Then the reliability estimator R(p) performs better than the other
two reliability estimators R(p) and R(p) in the sense of MSE.

Since 2(2AY"7_, X;) and 2(A0 >_." | Y;) having the independent x? -distribution with de-
gree of freedom (d.f.) 2n respectively, then Q= p(3>_7" ,Y;/> ", X;) is a pivot quantity
having a F-distribution with d.f. (2n,2n).

From the monotone decreasing property of R(p) in Proposition 2.1, a (1 — a)100% confi-
dence interval of R(p) is given by as follows.

(R( w/2(2n,2n) (ZY/ZX)) (F eI <ZY/ZX>>

i=1 i=1

where I, /2(2n,2n) is the upper a/2 percent of F-distribution with d.f. (2n,2n).

3. Distribution of ratio Y/(X +Y)

In this section, we consider the distribution of ratio R = Y/(X +Y) for (X,Y"), which it’s
the two components of life times having the bivariate exponential density (1.1).

First, from the quotient density in Rohatgi (1976) the density of W = X/Y is derived as
follows.

fw(w) = - (w + ) , w>0. (3.1)

Since the ratio is defined as follows

R=Y/(X+Y)=1/14+W),
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then the density of ratio R is given by as follows.
-2
1{/1
fr(r) = -——1]r+1
pl\p

, 0<r<1, (3.2)

wherew+%>01ﬂ?(%—l)r+1>0.

From the density (3.1) and formula 2.29 in Oberhettinger (1974), k-th moment of the ratio
R is obtained as follows.
For k=1,2,3.---,

P R Lk+21—p), if0<p<]

k+1

(3.3)
oF (k,1;k+2;1—1/p), if p> 1.

where, 2 F(a, b; ¢; x) is the hypergeometric function.

From the recursion formulas 15.2.13 and 15.2.25 of hypergeometric function, the formula
15.1.8 in Abramowitz and Stegun (1970), and k-th moment of the ratio R in (3.3), Table
3.1 provides numerical values of mean, variance, and coefficients of skewness for the density
(3.2) of the ratio R when p =1/8(2)8.

Table 3.1 Mean, variance, and coefficients of skewness for
the density (3.2) of the ratio R when p=1/8(2)8

P mean variance skewness
1/8 .19664 .04801 1.60988
1/4 .28280 .06483 1.00876
1/2 .38629 .07819 0.48613

1 .5 .08333 0

2 61371 .07819 -0.48613

4 71720 .06483 -1.00876

8 .80336 .04801 -1.60988

From Table 3.1 we observe the trends of the density (3.2) of the ratio R as follows.

Fact 3.1 Let (X,Y) be two components of life times having the bivariate exponential
density (1.1) and p = 2/60. Then

(a) the density (3.2) of the ratio R is symmetric at p = 1.

(b) it’s right-skewed when p < 1, but left-skewed when p > 1.

4. Maximum and minimum of (X,Y)

In this section, we consider k—th moments of M = max{X,Y} and m = min{X,Y}

when (X,Y) is a pair of two components of life times having the bivariate exponential
density (1.1).

Proposition 4.1 Let (X,Y) be two components of life times having the bivariate expo-
nential density (1.1), and M = max{X,Y} and m = min{X,Y}. Then for k =1,2,3.---,
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(a) B(m*) =T(k +1) (21/\> (1 - Z) + <,\19> (1 + Z) ;

where T'(a) is the gamma function.

1 k 1 k 1 k 9 —k—1 1 k 9 —k—1
1 g 1 g
=T(k+1) (n) + <M> — E(m").

(a) It follows from the formula 3.381(1) in Gradshteyn and Ryzhik (1965), and the formula
17.89 in Oberhettinger and Badii (1973) by integral calculations.

Proof

(b) It follows from the formula 3.381(3) in Gradshteyn and Ryzhik (1965), and the formula
17.90 in Oberhettinger and Badii (1973) by integral calculations. O

From the density (1.1), we obtain as follows.

—EX—1 = X——l—2
= E( )—57012 ar( )—4/\2—%
and
_ 1 2 _ 1 2
U2 = E(Y) = %7 0y = VGT(Y) = W = U (41)

As putting k¥ =1 and 2 in Proposition 4.1 and applying the relations in (4.1), we obtain
the proposition as follows.

Proposition 4.2 Let (X,Y) be two components of life times having bivariate exponential
density (1.1), and M = max{X,Y} and m = min {X, Y }. Then

(a) E(m) = (1 + p/p2) ™",
B(m?) = 23 (1 + i f11z) = + (1 + pa 1)),
and
Var(m) = E(m?) — E(m).
(b) B(M) =y + p2 — E(m), E(M?) = 2(uf + p3) — E(m?),
and

Var(M) = 2(uf + p3) — E(m?) - [ + pg — E(m)]?.
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Now we consider how E(M), E(m), Var(M) and Var(m) vary with respect to means
and po in the bivariate exponential density (1.1).

Proposition 4.3 Let (X,Y) be two components of life times having bivariate exponential
density (1.1), and M = max {X,Y} and m = min {X,Y}. Then for yy = E(X) and p2 =
E(Y),

a) E(M) and E(m) are monotone increasing functions of p; for ¢ =1 and 2.

Var(m) is a monotone increasing function of y; for i=1 and 2.
(

d) Var(M) is a monotone increasing function of ps (> ).
)

Proof (a) It is possible to derivate as follows.

OE(m
al(“ ) (14 1 /p2) = >0,
OE(M JE(m
a/(u L1 6/51 = L= (14 p/p2) 72 >0,
OE(m
8/52 - (1+ pa/p) "2 >0,
and
OE(M OE(m
8/(@ o1 8;(@ = 1= (14 p2/m)~2 > 0.
(b) Since
OE(m?) 3 Var(m) OE(m?) OE(m)
= 4y (1 + =3 and = 2B ,
i pa(1+ p1/p2)™" an o i (m) i
from
OE(m
8/21 - (14 1 /p2) ™ and E(m) = pa(1+ pa/p2) % + pa(1 + pa/p) 2,

we obtain as follows.

aVar(m
AT a1+ 1) > 0.
H1
And, since
OE(m?) i 3 OVar(m) OE(m?) OE(m)
471 4 -3 and - 9 :
Opa M%( i /ua) " en Opiz Opz (m) Opz
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from
OE(m)  pi s PR s
= —5(1+p1/p2) " and E(m) = p1 (1 + pa /p2) ™ + —(1+ pa/p2) ™7,
Opa i3 [h2

we obtain as follows.

WVar(m)  u L
—=4—(1+ > 0.
8,&1 M%( ;Ufl//J’Q)
- Var(M) OB(M?) OE(M)
From P tion 4.3(b) and - —2B(M ,
(c¢) From Proposition 4.3(b) an ) o (M) o
OVar(M) OE(m?) OE(m)
s e DYk A N + s — E(m)).
B H1 Em o (p1 + p2 (m))
Since
OE(m?) OE(m)
—ap -~ Am(+ -, =(1+ -,
A pa( 1/ p2) YR ( /)
and
E(m) = (1 + i /p2) ™2 + pa (1 + pz/pa) 72,
oVar(M 2 )
5,u(1) =2(p1 — p2) + 4%(1 + 1/ p2) 4 201 (1 + pa/p2) (1 + ppe + p2/ )

2
H _ .
+2l7;(1 +pa/pe) T+ pa/p2)? = 1] > 0 i g > po.

(d) By the similar method in (c),

oVar(M) u? _ _
o =2(u2 — ) + 4;;(1 o p2) 70 A 20 (1 + [ paa) (L + pa /p2)? — i/ i)
2
W _ .
+2;1(1+u1/u2) N+ pa/p2)? =1 >0 if pg > . O
2
Since 02 = p? for i=1 and 2, and agﬁ?) = ag,(]?) gﬁ:z = 107! algiT)’ signs of ag:(g?) and

31371(”7") are same. By applying it by E(M), Var(m), and Var(M), we considered how E(M),
E(m), Var(M), and Var(m) are varied with respect to the variances o} and o3 in the
bivariate exponential density (1.1). Then we obtain as follows.

Corollary 4.1 Let (X,Y’) be two components of life times having the bivariate exponential
density (1.1) and M = max{X,Y} and m = min{X,Y}. Then for ¢ = Var(X) and
o2 =Var(y),

(a) E(M) and E(m) are monotone increasing functions of o2 for i=1 and 2.

(b) Var(m) is a monotone increasing function of o2 for i=1 and 2.
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(c) Var(M) is a monotone increasing function of o? (> 03).

(d) Var(M) is a monotone increasing function of o3 (> o%).
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