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ON BAYESIAN ESTIMATION AND PROPERTIES OF
THE MARGINAL DISTRIBUTION OF A TRUNCATED
BIVARIATE ¢-DISTRIBUTION

Hea-JuNg Kim*anDp Ju Sung Kim!

ABSTRACT

The marginal distribution of X is considered when (X,Y’) has a trun-
cated bivariate t-distribution. This paper mainly focuses on the marginal
nontruncated distribution of X where Y is truncated below at its mean and
its observations are not available. Several properties and applications of this
distribution, including relationship with Azzalini’s skew-normal distribution,
are obtained. To circumvent inferential problem arises from adopting the
frequentist’s approach, a Bayesian method utilizing a data augmentation
method is suggested. Illustrative examples demonstrate the performance of
the method. '
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1. INTRODUCTION

A random variable is said to be skew-normal with paranieter 0, written Z ~
SN(6), if its density function is

2¢(z)®(0z), —oo < z < 00, (1.1)

where ¢(z) and ®(z) denote the standard normal density and distribution func-
tion, respectively. The parameter § € (—o0, 00) regulates the skewness, and 8 = 0
corresponds to the standard normal density. A systematic treatment of the dis-
tribution has been independently given by Azzalini (1985) and Henze (1986) and
extensions of the distribution are considered by Azzalini and Dalla Valle (1996),
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Branco and Dey (2001), Azzalini and Capitanio (2003), and Ma and Genton
(2004). The distribution is suitable for the analysis of data exibiting a unimodal
empirical distribution but with some skewness present, a situation often occur-
ring in practical problems. See Azzalini (1985) and Arnold et al. (1993) for some
applications of the distribution.

Kim (2002) modified the distribution to obtain a skew-t distribution, St(¢, v),
whose density function is

0tv/v +1
Vv +t2

where f,(-) and F,;1(-) are the standard ¢, density and ¢,+; distribution function,
respectively. It is seen that S¢(#,v) distribution leads to a parametric class
of distributions that have the properties; (i) strict inclusion of ¢, distribution,
(ii) mathematical tractability, (iii) wide range of the indices of skewness. An
application of St(8,v) distribution in fitting the binary regression model is given
by Kim(2002).

The purpose of the present paper is to introduce further properties of St(6, v)
distribution, some relations with a bivariate ¢-distribution. Such properties are
potentially relevant for practical applications, since in data analysis there are

2fu(t)F,,+;1< ), —00 < t < 00, (1.2)

a few parametric distributions available to dealing with both symmetric and
skewed data, especially for the problem of fitting data from a screening process.
See Arnold et al.(1993, 2002) and Cohen(1991) for reviews of the literature in
the screening process. Another is to develop a Bayesian estimation of the gen-
eralized St(6,v) distribution, utilizing a data augmentation method, in order to
circumvent inferential problem arises from adopting the frequentist’s approach.
Furthermore, this paper gives illustrative examples to demonstrate the utility of
the suggested properties of St(6,v) distribution.

2. THE PROPERTIES

Suppose that h,(z,y) is the density of t,(u1, ue, 01,09, p) distribution, i.e. a
bivariate t distribution with degrees of freedom v, mean vector (u1,u2), scale
vector (02,02), and correlation p, and suppose the joint density of (X,Y) is

hxy(z,y) =2h,(z,y), —o0 <z <00, ¥ > . (2.1)

Clearly, (X,Y) has a truncated bivariate ¢, distribution so that Y is truncated
below at its expectation. In this paper we are concerned with the marginal
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distribution of X, the untruncated variable. By direct integration one obtains

0t\vv + 1
Vv + t2

where t = (z — p1)/o1 and 0 = p/+/1 — p?, respectively. From now on, we will
denote the marginal distribution of X with the density (2.2) as St(0,v, u1,01).

hx(z) = 2/01f,,(t)Fl,+1( ), —00 < T < go, (2.2)

LEMMA 2.1. Let (W1, W53) be a t,(u1, u2,01,02, p) random variable, and let
T, = (W;—u1)/o; fori=1,2 so that (T1,Ts) is a t,(0,0,1,1, p) random variable.
Then the conditional distribution of Ty given that Ty = t1 is t,41(c, B) distribu-
tion, where a = pty, B = /(v +t$)(L —p?)/(v + 1) and t,41(e, 3) denotes a
univariate t,1 distribution with the mean o and the scale parameter G2

PROOF. Since the marginal distribution of Ty is ¢, = t,(0,1), complicated
but straightforward derivation of the conditional density of T5 leads to

1)(w+1)/2 _ 2y —(v+2)/2
Fltalty) = —2+ D) {(,,+ 1+ (t2_a> } oo <ty < oo

~ BB(1/2,(v +1)/2] g
(2.3)
for —oo < t; < oo, where B[] is the beta function. (2.3) is the density of
ty+1(e, B) distribution, and hence the result. a

Applying the relations T; = (W; — ;) /o to (2.3), we can immediately obtain
the following conditional distribution.

THEOREM 2.1. If (Wy,Ws) is a t,(u1, no, 01,09, p) random variable, and X
is set to equal to Wy conditionally on Wy > pe. Then X ~ St(6,v, p1,01).

Proor. The conditional density of W; given that Wa > u9 is obtained from
that of 77 given that T3 > 0, where the variables T3 and T3 are the same ones
defined in Lemma 2.1. Using (2.3), one can obtain the conditional density of
T1 given that T5 > 0 from 2 f0°° f(ta|t1) fu(t1)dta, where f,(¢1) is the t, density.
Straightforward integration with respect to t2, and then transforming ¢; to w;
and setting w; to z gives (2.2). O

COROLLARY 2.1. ForT ~ St(0,v), the distribution of o1+ p; is St(8, v, u1,
0'1).
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- Proor. Considering the transformation X = 01T + p1 with density of T in
(1.2) gives the result. ' O

This representation of St(6,v) distribution is interesting since it links the
distribution to a censoring operation on t variates, a situation naturally occurring
in a large number of practical cases. A similar conditioning mechanism can be
used to obfain the distribution as a prior distribution for the mean of a t variable,
in a Bayesian framework. We see, from Theorem 2.1 and Corollary 2.1, that
a random variable X with distribution St(¢,v, u1,01) can be generated by the
following acceptance-rejection method. Sample a pair (77, T») from ¢,(0,0, 1,1, p)
distribution. If T > 0, then put X = 0177 + p1, otherwise restart sampling a
new pair of variables (T3, T5), until the condition 75 > 0 is satisfied. On average
two pairs (77,T5) are necessary to produce X. Theorem 2.1 and Corollary 2.1
also lead to following properties:

PROPERTY 1. For y; =0 and oy = 1, St(0,v, p1,01) = St(0,v).

PROPERTY 2. For p; = 0 and 01 = 1; (i) as v — oo, St(0, v, u1,01) distri-
bution tends to SN(8) distribution; (ii) as ¥ — oo and 6 — 0, the distribution
tends to N(0,1) distribution; (iii) as § — oo, the distribution tends to half-t,
distribution.

PrROPERTY 3. If X ~ St(6,v,u1,01), then —X is a St(—0,v, u1, —0o1) ran-
dom variable.

PROPERTY 4. If Z ~ 5t(6,v), then Z2 ~ F1,, a F distribution with degrees
of freedom 1 and v.

PROPERTY 5. For p =0, St(0,v, u1,01) = t,(u1,01).

Above properties yield useful distributional results. Especially, Property 4
Jeads to a counter example for showing that the reverse of a well-known prop-
erty of ¢, distribution is not true. That is, for Z ~ t,, then Z? ~ Fy,, but the
reverse is not true by Property 4. Furthermore, Property 5 can be used to test
Hy : p = 0 against H; # 0 for a St(6,v, yu1,01) distribution. The following fur-
ther representation of St(f,v) distribution relates the skew-normal distribution,
SN(6).
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FIGURE 2.1 Shape of Density of St(6,v, u1,01) Distribution for Various Set of Parameter Values
(971/7 H1701)~

THEOREM 2.2. Let Z ~ SN(8), then a scale mizture distribution of \™1/2Z
is St(0,v), where the scale mizture distribution is A ~ Gamma(v/2,2/v), a
gamma distribution with the mean 1 and the variance 2/v.

PROOF. See Kim (2002).

Using Theorem 2.2 and the moment generating function of Z ~ SN(8) in

Azzalini (1985), we have at once that the moment generating function of T' ~
St(6,v) is

Mz (n) = 2Ex[exp(n®/2X)®(pA™"/*n)], 00 < 7 < o0. (24)
O

Corollary 2.1 notes that it suffices to obtain the moments of T' to get those
of X ~ St(8,v, p1,01). From (2.3), we obtain

E[T] = p(v/m)'/*T((v — 1)/2)/T[v/2], (2.5)

E[T*=v/(v—2) forv > 2, (2.6)
3ov3/2(1 4+ 262/3)T[(v — 3)/2

ETY =2 2751 /4;(1 +/92))F[EV 7 W o053 (2.7)

E[T* =15 (g)3 &1’:[;7%@ for v > 6, 2.8)

and skewness (33 is A/var(T)32, where

A=6[(5)1/2( 3 F[(V—l)/?]{ 1 +e23}]

T 146232 (v —2)T[v/2] \v—-3
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and

_(2v-2) , 2(v-2)T|(v-1)/2)? B
b= (3(1/ T P 1) ' (2.9)

A numerical evaluation by Mathematika showed that B > 0 for all integer
values of v for which v > 3, and hence the skewness 3 depends only on the sign
of p value in 8 = p/+/1 — p?. This implies that St(0,v, u1,01) distributions are
skewed to the right (the left) when p > 0 (p < 0). Figure 2.1 depicts various
shapes of density of the St(6, v, u1, 01 )distribution.

3. BAYESIAN ESTIMATION

Let X1, X3, ..., X, be arandom sample of size n obtained from St(8, v, y1,01)
Distribution. From (2.2), the log-likelihood can be written as

+1)1/20¢;
InL(8,v,u1,01) = nln(2/01)+ E In f,(t;)+ E InF, 1 <V( +)t2)1/21 ) , (3.1)
i=1

where t; = (z; — p1)/01. Unfortunately, general statistical analysis based on ¢,
distributions has been hindered by the nonexistence of a simple estimator of the
degrees of freedom v (see Johnson et al. 1995, p.399). This implies that the
likelihood function (3.1), a function of f, and F, 41, is too complicate to obtain
the maximum likelihood estimators of the four parameters in the St(8,v, p1,01)
distribution. Moreover, the moment estimators of the parameters obtained from
using (2.5) through (2.8) would not be represented in a closed form. These, in
turn, lead to absence of exact distributions of the estimators, and hence inference
for the parameters is not possible, especially for small and intermediate sample
size n. We shall show, by exploiting a particular mathematical representation
involving the St(8,v, u1,01) density, that Bayesian inference for the parameters
can be implemented by using MCMC (Markov chain Monte Carlo) scheme, par-
ticularly the Gibbs sampler.

3.1. Joint Posterior Density

From Theorem 2.1, we can have an alternative expression for the joint dis-
tribution of n x 1 vector of observations x from the St(6,v,ui,o1) distribu-
tion. More specifically, let (T1,7%2) be a t,(0,0,1,1,p) random variable, and
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let Ty; = (X; — p1)/o1, then the joint pdf of X1, Xo,..., X, can be expressed as

F(x 18, v, p1,01) = (2/01) / /0 T otons )it

where t1; = (z; —p1)/o1 for i = 1,2,...,n and t2 is a n x 1 vector of auxiliary in-
dependent t,, variables ty;. Therefore, under the reparametrization p = 6/v/1 + 62
and some prior density 7(p, v, 11, 01), the posterior density of parameters is given
by

n

o0 o0
71'(,07 v, 1,01 lX) & a;n/ : / 7"(/’> v, Hlaal)HhV(tliat%)dtZ- (32)
0 0 i=1
This representation requires the use of MCMC schemes. The combination of
MCMC and the forgoing posterior density representation enables us to produce
samples from the joint posterior density of St(6, v, u1, 01 )parameters denoted by
7T(p, v,p1,01 lx)

3.2. Gibbs Sampler with Data Augmentation

The Gibbs sampler is a Markovian updating scheme developed by Geman and
Geman (1984) and introduced as a powerful tool in general Bayesian statistics
by Gelfand and Smith (1990). The Gibbs sampler needs not to be restricted
just to parameters. When a model includes auxiliary variables (missing data,
for example), Gelfand et al. (1992) showed that such unobservable variables
can simply be added to the parameter vector and the Gibbs sampler can be
constructed for the augmented vector.

The idea of running the Gibbs sampler on an augmented vector of unknowns,
we generate from 7 (p, v, p1, 01 |x) as follows. For each observation z;, we generate
a tg; from f(to; |u,0,p,x;), given by Lemma 2.1. Once we have generated the
entire n x 1 vector tg = (t21,%22,...,t2,), we generate ui, o1, p and v from
respective full conditional posterior distributions:

TI'([Ll ‘p’ V,017x,t2)) 71'(0'1 |P’ v, ,u'laxyt2)y7r(p |Va Ml,Ul,x,tz), 71'(V ‘pa Mlaalaxat2)'

A long run, iterating this procedure, enables us to estimate and summarize fea-
tures of m(p, v, pu1,01 |x), and hence m(6,v, p1,01 |x) as required. The crucial
feature of this method of analysis is that, by introducing auxiliary variables, we
have circumvented the problem of being unable to specify the Gibbs sampler for
the joint posterior (3.2) in a closed form.
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3.3. Random Variate Generation of to

We begin with the data augmentation, ¢.e. Gibbs sampling of to = (t21,%22,...,
ton)’. Efficient generation from

T2i |(p’ v, /’Llaalyx’i) ~ tV+1(a’iyﬁi)I(T2i 2 0)) 1= la N2 (33)

where t,41(04, 5;)I(T2; > 0), denotes a truncated t,41(y, B;) distribution with
lower truncation point at 0. Here a; = pty;, 8; = \/(1/+t%i)(1 -p)/(v+1),
t1i = (z; — p1)/o1. The data augmentation is vital to the successful implemen-
tation of the St(6, v, 11,01) analysis, because a to; value is required for every z;
value, at every iteration of the Gibbs sampler. The efficient one-for-one method
by Devroye(1986) is available for generating variate Tb; from the truncated distri-
bution (3.3): Let u; be an observation generated from Uni form(0, 1) distribution,
then

to; = oy + G; FV__+_11[P(U1 ;ai,ﬁi)], i=1,...,n (3.4)
is a drawing from the distribution (3.3), where F,1; is the distribution function
of t,4y-distribution, and P(u; ; 04, 8;) = Fyq1(—ai/Bi) + ui(1 — Fup1(—Bi/ ).

3.4. Random Variate Generation of up

From Lemma 2.1 and (3.2), we see that the full conditional posterior density
for p1, with a prior density 7(u,), is given as

(2 — 1ot )]
(s 1p,uol,xt2>o<m)H{ s | (3.5

—(v+2)/2
o}(1—p?)(v + 1) }

i=1

for —oo < p1 < 00. The fact that we have little knowledge of the shape of the den-
sity suggests using the Metropolis-Hastings sampling algorithm (see, Gustafson
1998 and references therein). Since the distribution of the full conditional pos-
terior is continuous distribution, we adopt the RW (random walk) Metropolis
algorithm that works as follows: Assume that we currently performing the kth

iteration of the sampler then updating procedure from u(k) to ,ugkﬂ) i

1. Generate p} from ll,( ) + Z, where Z ~ N(0,7%).

2. Generate u from a Uniform(0,1).

3. Ifu< 71'( |P, v, Ulaxat2)/ﬂ-(p’§k) !p, v, 0'1,X,t2) then /j‘(lH_l)
wise, uV D & 6
1 =Hp -

= pi; other-
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3.5. Random Variate Generation of o1

The full conditional posterior density for g; with a prior density m(o1) is

T [u1 — (zi — 01pt:))? R/
m(o1 |p, v, 1, %, t2) oc m(o1)o] H 1+ 2( —p)(v + t%)
T

=1

(3.6)

for 01 > 0. Generating o1 from the distribution of (3.6) is not trivial since no
real information on the shape of (3.6) is available, so once again, we use to
the Metropolis- Hastings algorithm. We consider the following RW Metropolis
algorithm with a de-constraint transformation to sample 1. Since o1 > 0, we let
§ =Inoy, —o0 <& < co. Then

”T(é- |pa v, i, X, t2) = 7'['(0’1 |p3 v, “lax7t2) eE' (37)

Instead of directly sampling o1, we generate £ by choosing a proposal transition
density that adds noise to the current state. The algorithm to generate £ operates
as follows: Assume that we are currently performing the kth iteration of the
sampler, then updating procedure from £*) to ¢+ is to use the RW Metropolis
step as in Section 3.4. After we obtain ¢*7D | we compute o**1 by using the
relation £ = Ino;.

3.6. Random Variate Generation of p

Assuming a uniform prior Uniform(—1,1) for p, the full conditional posterior
density for p is given by

_ ¢ )]2 —-(v+2)/2
1,01, %, e { Ere } e
m(p v, 1,01, %, t2) o H o(1 = p)(v +13) e

for —1 < p < 1. Generating p from (3.8) is not trivial since (3.8) is not log-
concave. Therefore, we consider the following RW Metropolis algorithm with a
de-constraint transformation to sample p. Since —1 < p < 1, we let

p=(—1+e)/(1+¢), —00 << o0. (3.9)
Then

: 2¢¢
(¢ |p1,01,%,t2) = 7(p |H1,01,X,t2)m-
Instead of directly sampling p, we generate ¢ by using the RW Metropolis step
in Section 3.4. After we generate (*t1) we compute p:+1) in each iteration

by using the relation (3.9), and hence we generate 6k+1) by using the relation

6 =p/\/1-p2



254 Hea-JunGg KiM AND JUu SunGg KiMm

3.7. Random Variate Generation of v

Finally, we sample v from its full conditional posterior density that is

’IT(V Ip’ ,U/1,0'1,X,t2) X 7T(l/)h,(1/ |Paﬂ170'1,X, t2), (310)
where
T (v +2)/2\ " 12— 9ty 4 12.]) "D/
h(v Ip,ul,al,X,tz)=< 1%,,/2] )/ ]) {,,+ [t5; 1p—hp§1 21,]} ,
i=1

and t1; = (z; — p1)/o1. A way of generating v is to use a Metropolis-Hastings
algorithm (practiced by Chib and Greenberg, 1995) using the Uni form prior on
% (0 < 1 < 1), where ¢ = 1/v. Thus we set a proposal density g(v, ¥*) = 7(v*)
which supplies candidate values ¢* given the current value of 1. In this case, the
probability of move requires only the computation of h function. Thus the kth
iteration of the Metropolis step is given by

1. Generate 9* from a Uniform(0,1).
2. Generate u from a Uniform(0,1).

3. Ifu< h("vb* lpa y’laalaxitz)/h(w(k) |pa N1a017x7t2) then ,(/)(k_*—l) = 1/)*; oth-
erwise, Pkt = (k)

After we obtain /(**1), we compute v(F+1) by using the relation v = 1/1. Note
that the proposal density need not to enforce the interval constraint, because it
is uniform distribution on 0 < ¢ < 1. Thus we use a Metropolis step to draw u;,
o1, p, and v and the Gibbs sample is obtained by drawing tg, p1, o1, p, and v in
turn, after convergence.

4. NUMERICAL EXAMPLES

4.1.  Simulation Study

Our examples are illustration of extensive studies we have undertaken to vali-
date the MCMC method. We generated n observations from a X ~ St(0, v, yu,01)
distribution using the algorithm in Section 2 and then ran the Gibbs sampler for
60,000 iterations. For the starting points of the sampler, it appears that the
sample mean and the sample standard deviation are reasonable starting points
for 417 and o1. In an attempt to test the robustness of the sampler, we started p
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FIGURE 4.1 The Ergodic Average of the Trace of the Parameters; (a) Average of Gibbs sample
of p1 up to kth iteration; (b) Average of Gibbs sample of o1 up to kth iteration; (c) Average dof
p; (d) Average of v.

and v well away from their true values, i.e. true value of p plus 0.2 and that of
v plus 2.

For the analysis of the MCMC method given in Section 3, we need to specify
the priors of ; and 0. Because u; and o7 correspond to location and scale, it may
be relatively straightforward for a particular application to assign informative
prior distributions to these parameters (because it is usually reasonable to assume
independent between the two). The many guideline for prior selection of the loca-
tion and scale of a normal distribution may be followed as a good benchmark (see,
for example, Berger 1985). Thus we assume 7(p1) o exp {—(u1 — 8)?/(272)},
a normal prior, and 7(01) o o7™ ! exp {-5/(20%)}, a generalized inverse Chi-
density on m degrees of freedom as given in Lee (1997). The hyperparameter
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FIGURE 4.2 Frequency Histogram of L = 20,000 Gibbs Sample of (p,v,p1,01); (o) Histogram
for Gibbs sample of u1; (b) That of o1; (c) That of p; (d) That of v.

specification was defined by § = 0, 7 = 10, m = 3, and S = 100, reflecting rather
vague initial information relative to that to be provided by the data. A simu-
lation study with various sample sizes and set of parameter values is conducted
and estimation results by the MCMC method are obtained as listed in Table 4.1.

For calculating the estimates, the iterative process was monitored by observ-
ing trace of the Gibbs samples. The diagnostics we used are described in Cowles
and Carlin (1996). For each data set, we used 40,000 iterations to "burn in” the
sampler; the decision is based on the trace plots in Figure 4.1. Figure 4.1 shows
the ergodic averages of the trace of the parameters, (p,v, u1,01), leading us to
believe that convergence has been attained before 40,000 iterations. By adjust-
ing the turning constant (standard deviation of the transition density in the RW
Metropolis algorithm), we were able to keep the jumping probabilities between .23
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TABLE 4.1 Posterior Summaries for St(6,v, u1,01) distribution Parameters

True Value Posterior Mean Posterior s.d.
(o, v, p1,01) m p 1 i 51 sd(p) sd(®) sd(h) sd(d)
(.7,5,-1,2) 20 627 6.126 -.993 2.383 .132 1.892 198 241
50 .645  5.452 -1.019 1.872 .126 1.564 .188 194
100 .689 4.865 -.941 2.010 .086 1.221 176 154
(7,10,-1,2) 20 J751 0 9123 -.961 2.126 .089 1.762  .187 .281
50 750 11.324  -.968 1.985 .099 1.634 185 .201
100 664 9.628 -.971 2.172  .089 1.469 182 .153
(.5,5,1,2) 20 562 6.917 1.033 2.175 143 1.813 .189 287
50 485 4.982 1.029 2.092 117 1.794 191 216
100 487 5.164 = .983 2.036 .097 1.263 .181 163
(.5,10,1,2) 20 404 8.952 .955 2.231 185 1.712 .195 .210
: 50 462 9.417 .954 2.071 .150 1.599 .198 175
100 .483 10.535 .980 2.023 127 1.486 .190 .138
(5,20,1,2) 20 524 18.164 1.015 1.885 .170 1.936 .195 .204
50 .541  19.361 .946 1.983 .136 1.827 .191 171
100 .537 19.621 .934 2.258 .105 1.612 183 151
(.3,5,3,2) 20 359 6.198 2.853 2.279 183 1.912 .204 315
50 312 5.976 2.825 2.156 .158 1.654 197 .208
100 .304 5.297 2.783 2.118 111 1.015 185 157
(.3, 10, 3, 2) 20 293  11.786 2.888 2.344 198 1.753 .193 277
50 283 11.019 2.868 2.019 .163 1.534 191 .168
100 .286 10.592 2.824 2.062 .108 1.212  .180 .139
(:3,20,3,2) 20 320 22549 2.857 2321 181 2.387  .197 293
50 316 21.154 2.893 1944 .163 2.146  .200 .164
100 .303 19.259 2.889 2.150 .118 1.789 191 .138

and .5 (see, Gelman et al. 1996; Robert et al. 1997). The frequency histogram of
the Gibbs sample of each parameter was also considered. As given in Figure 4.2,
all the histograms were centered about their true values and seemingly unimodal.
The sample means (estimates of posterior means) are not perfect as parameter
estimates, because of the amount of skew in the Gibbs samples as depicted by
the histograms; however, as given in Table 4.1, they produced accurate estimates
for the parameters of St(8, v, u1,01) distribution.

4.2. An Example with a Screened Data

The screening process is frequently based upon an individual’s score on one
or more screening variables. A St(p,v, u1,01) model is useful for describing the
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TABLE 4.2 Summary of Statistics
Variable Mean’ , s.d. Correlation

Environment Score (X) 1 =55462 o1/v/vVv—2=15974 p=.844
Index Score(Y) pz = 52.683  o24/v/Vv — 2 = 18.863

screening process. As an example for this, we consider a data set from KEBIX
2003 (Korea e-Business Index 2003) data base. The data set consists of 509 pairs
of environment score (X) and e-business index score (Y) obtained from companies
(or public organizations) that are operating in Korea in 2003. The environment
score (X)) measures external environment that effect e-business activities and the
e-business index score (Y') measures e-business activities of a company (or public
organization). Summary of statistics of the 509 pairs of scores is listed in Table
4.2.

For an illustrative purpose, we set up a screening process that drops companies
whose index scores achieve Y < po. So that we consider here the case in which Y’
represents the screened variable and X represents the variable that is measured
following initial screening. The process dropped 266 companies so that 243 com-
panies have passed the screening process. We assume that the only observations
available are environmental scores (X) of 243 companies that passed the screen-
ing process and that corresponding index scores (Y) are not available. Figure 4.3
depicts a Box-plot of the 243 scores of the unscreened variable of X, indicating
moderate right skewness of the score distribution. The mean and standard de-
viation of the 243 observed scores are z = 69.617 and sy = 8.5682, respectively.
Given the 243 scores, applying the MCMC method in Section 3 (with 10,000
iterations to burn in the sampler and Gibbs sample of size =1,000), we estimate
the location and scale parameter'of the unscreened population environmental
scores as i1 = 56.915(1.495) and &1 = 14.596(.694). The quantities in parenthe-
ses are the estimated standard deviations of the estimates. The MCMC method
also gives estimates of p and v, the degrees of freedom of the St(p,v,u1,01)
distribution. They are p = .899(.075) and v = 18.826(2.410). Comparing the
estimates with the true values listed in Table 4.2, we see that ;7 = 56.915 and
F1VD /v — 2 = 15.439 give fairly good estimates of the theoretical mean (55.462)
and standard deviation (15.974) of in the unscreened population, while the val-
ues, T = 69.617 and sx = 8.5682, are population mean and standard deviation
of the marginal distribution of X, subject to ¥ > pus.
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FIGURE 4.3 Boz-plot of the Screened Data

To evaluate the fit of the posterior distribution of the St(p, v, u1,01) model,
we compare the observed data to the posterior predictive distribution using the
posterior predictive p-value suggested by Gelman et al. (2000, p.169). The p-
value is defined as the probability that the predicted data could be more extreme
than the observed data, as measured by the test quantity:

Bayes p-value = Pr(T(x"",¥) > T(x, %) |x), (4.1)

where the probability is taken over the posterior distribution of ¥ = (v, p, u1,01)’.
Here xP™¢ and x denote the vectors of predicted and realized observations, respec-
tively. As the test quantity, T'(x, ¥), we choose a general goodness-of-fit measure
that is the discrepancy quantity, written here in terms of univariate observation

z;:
n

z, — BE(x; z
T(x, V) =Z( i = Bz [9))7 (4.2)

Var(z; |¥)

The expected value and the variance in (4.2) are readily evaluated by (2.5) and
(2.6). For evaluating T'(xP"¢, ¥), we use the following simulation: If we already
have Gibbs sample {¥; ;£ = 1,...,L} of size L = 1,000 from the posterior
density of ¥, we just draw one observation vector xgre of size n = 243 from the
predictive distribution obtained from /¢th simulated value of ¥, ¥,. Thus we have
L draws of x)"®. The posterior predictive check is the comparison between the
realized test quantities, T'(x, ¥), and predictive test quantities, T'(x}", ¥). The
estimated p-value is just the proportion of these simulations for which the test
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quantity equals or exceeds its realized value; that is, for which
T(xP,¥,) > T(x,¥,), €=1,2,...,L.

In this example, the estimated p-value based on L = 1,000 draws is 0.342. This
implies that the unscreened environmental scores (X) artificially obtained from
KEBIX 2003 data seem to well described by the St(p, v, p1,01) model.

5. CONCLUDING REMARKS

We have considered a distribution of the truncated bivariate t random vari-
able, the St(p, v, 1, 0y) distribution. Little work on the estimation appears in the
literature due to the complex likelihood function. Estimation of the four param-
eters of the distribution, corresponding to degrees of freedom, skewness, location,
and scale has been carried out using a MCMC method exploiting the result of
Theorem 2.1, specifically the Gibbs sampler consisting of a data augmentation
technique derived by Theorem 2.1 and Metropolis-Hastings algorithm with each
Metropolis step obtained using an independence chain. We have shown how the
MCMC method can be used to generate posterior samples from the parameters
of the distribution. With these samples, we are in a position not only to estimate
parameter values, but also to make more general inference. We could, for exam-
ple, readily compute parameter quantiles or estimate arbitrary functions of the
parameters.

The validation examples in Section 4 demonstrated good performance of the
MCMC method. Moreover, it is seen that the St(p, v, u1,01) model is suitable for
fitting data from a screening process where Y variable is screened but attention is
concentrated on the distribution of the unscreened variable X. The estimation of
the model provide both estimates of the expectation and the standard deviation
of X, as well as an estimate of the correlation between the two variables in the
original unscreened population, even though no observations of ¥ are available.
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