• Title/Summary/Keyword: Bipolar pulsed dc

Search Result 29, Processing Time 0.021 seconds

A Comparative Study of CrN Coatings Deposited by DC and Asymmetric Bipolar Pulsed DC Sputtering (DC 스퍼터법과 비대칭 바이폴라 펄스 DC 스퍼터법으로 제작된 CrN 코팅막의 물성 비교연구)

  • Chun, Sung-Yong;Baek, Ji-Won
    • Journal of the Korean institute of surface engineering
    • /
    • v.47 no.2
    • /
    • pp.86-92
    • /
    • 2014
  • The purpose of this comparative study was to investigate the properties of chromium nitride coatings deposited by asymmetric bipolar pulsed DC sputtering and DC sputtering system. Oscilloscope traces of the I-V waveforms indicate high power and high current density outputs during the asymmetric bipolar pulsed mode. The grain size decreases with decreasing duty cycle. The duty cycle has a strong influence not only on the microstructural properties but also on the mechanical properties of chromium nitride coatings. Comparing with the continuous DC sputtering, the chromium nitride coatings prepared by pulsed DC asymmetric bipolar process also exhibit better surface roughness.

A Comparative Study of TiN Coatings Deposited by DC and Pulsed DC Asymmetric Bipolar Sputtering (DC 스퍼터법과 비대칭 바이폴라 펄스 DC 스퍼터법으로 증착된 TiN 코팅막의 물성 비교연구)

  • Chun, Sung-Yong
    • Journal of the Korean institute of surface engineering
    • /
    • v.44 no.5
    • /
    • pp.179-184
    • /
    • 2011
  • This work investigated the effect of duty cycle and pulse frequency on the microstructures and properties of titanium nitride thin films deposited by asymmetric bipolar pulsed DC sputtering system. Oscilloscope traces of the I-V waveforms indicate high power and high current density outputs during the asymmetric bipolar pulsed mode. The grain size decreases with decreasing duty cycle. The duty cycle has a strong influence not only on the microstructural properties but also on the mechanical properties of titanium nitride films. Comparing with the continuous DC sputtering, the titanium nitride films prepared by pulsed DC asymmetric bipolar process exhibit better properties.

Crystal Structure, Microstructure and Mechanical Properties of NbN Coatings Deposited by Asymmetric Bipolar Pulsed DC Sputtering

  • Chun, Sung-Yong;Im, Hyun-Ho
    • Journal of the Korean Ceramic Society
    • /
    • v.54 no.1
    • /
    • pp.33-37
    • /
    • 2017
  • Single phase niobium nitride (NbN) coatings were deposited using asymmetric bipolar pulsed dc sputtering by varying pulse frequency and duty cycle of pulsed plasmas. Crystal structure, microstructure, morphology and mechanical properties were examined using XRD, FE-SEM, AFM and nanoindentation. Upon increasing pulse frequencies and decreasing duty cycles, the coating morphology was changed from a pyramidal-shaped columnar structure to a round-shaped dense structure with finer grains. Asymmetric bipolar pulsed dc sputtered NbN coatings deposited at pulse frequency of 25 kHz is characterized by higher hardness up to 17.4 GPa, elastic modulus up to 193.9 GPa, residual compressive stress and a smaller grain size down to 27.5 nm compared with dc sputtered NbN coatings at pulse frequency of 0 kHz. The results suggest that the asymmetric bipolar pulsed dc sputtering technique is very beneficial to reactive deposition of transition-metal nitrides such as NbN coatings.

Microstructure, Crystal Structure and Mechanical Properties of VN Coatings Using Asymmetric Bipolar Pulsed dc Sputtering (비대칭 바이폴라 펄스 스퍼터법으로 증착된 VN 코팅막의 미세구조, 결정구조 및 기계적 특성에 관한 연구)

  • Chun, Sung-Yong;Jeong, Pyeong-Geun
    • Journal of the Korean institute of surface engineering
    • /
    • v.49 no.5
    • /
    • pp.461-466
    • /
    • 2016
  • Nanocrystalline vanadium nitride (VN) coatings were deposited using asymmetric bipolar pulsed dc sputtering to further understand the influence of the pulsed plasmas on the crystal structure, microstructure and mechanical properties. Properties of VN coatings were investigated with FE-SEM, XRD and nanoindentation. The results show that, with the increasing pulse frequency and decreasing duty cycle, the coating morphology changed from a porous columnar to a dense structure, with finer grains. Asymmetric bipolar pulsed dc sputtered VN coatings showed higher hardness, elastic modulus and residual compressive stress than dc sputtered VN coatings. The results suggest that asymmetric bipolar pulsed dc sputtering technique is very beneficial for the reactive sputtering deposition of VN coatings.

A Comparative Study of TiAlN Coatings Deposited by DC and Pulsed DC Asymmetric Bipolar Magnetron Sputtering (DC 스퍼터법과 비대칭 바이폴라 펄스 DC 스퍼터법으로 증착된 TiAlN 코팅막의 물성 비교연구)

  • Chun, Sung-Yong;Lee, Tae Yang
    • Journal of the Korean institute of surface engineering
    • /
    • v.47 no.4
    • /
    • pp.168-173
    • /
    • 2014
  • The paper presents the comparative results of TiAlN coatings deposited by DC and pulsed DC asymmetric bipolar magnetron sputtering systems. The results show that, with the decreasing duty cycle and increasing pulse frequency, the coating morphology changes from a columnar to a dense structure, with finer grains. Pulsed sputtered TiAlN coatings showed higher hardness, higher residual stress, and smaller grain sizes than dc prepared TiAlN coatings. Moreover residual stress of pulsed sputtered TiAlN coatings increased on increasing pulse frequency. Meanwhile, the surface roughness decreased continuously with increasing pulsed DC frequency up to 50 kHz.

A Comparative Study of NbN Coatings Deposited by DC and Pulsed DC Asymmetric Bipolar Magnetron Sputtering (DC 스퍼터법과 비대칭 바이폴라 펄스 DC 스퍼터법으로 증착된 NbN 코팅막의 물성 비교연구)

  • Chun, Sung-Yong;Oh, Bok-Hyun
    • Journal of the Korean institute of surface engineering
    • /
    • v.48 no.4
    • /
    • pp.136-141
    • /
    • 2015
  • The paper presents the comparative results of NbN coatings deposited by DC and pulsed DC asymmetric bipolar magnetron sputtering systems. The results show that, with the decreasing duty cycle and increasing pulse frequency, the coating morphology changes from a columnar to a dense structure, with finer grains. The Pulsed sputtered NbN coatings showed higher hardness, higher residual stress, and smaller grain sizes than those of DC prepared NbN coatings. Moreover residual stress of pulsed sputtered NbN coatings increased on increasing pulse frequency. Meanwhile, the surface roughness decreased continuously with increasing pulsed DC frequency up to 50 kHz.

A Comparative Study of CrN Coatings Deposited by DC and Pulsed DC Asymmetric Bipolar Sputtering for a Polymer Electrolyte Membrane Fuel Cell (PEMFC) Metallic Bipolar Plate (DC 스퍼터법과 비대칭 양극성 펄스 스퍼터법으로 제작된 고분자 전해질 연료전지 금속분리판용 CrN 코팅막의 특성 연구)

  • Park, Sang-Won;Chun, Sung-Yong
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.6
    • /
    • pp.390-395
    • /
    • 2013
  • Nanocrystalline CrN films were deposited on Si (100) substrates by means of asymmetric pulsed DC reactive magnetron sputtering. We investigated the growth behavior, corrosion resistance and mechanical properties of CrN films with a change in the duty cycle and pulse frequency. The grain size of the CrN films decreased from 25.4 nm to 11.2 nm upon a decrease in the duty cycle. The corrosion potentials for the CrN films by DC sputtering was approximately - 0.6 V, and it increased to - 0.3 V in the CrN films which underwent pulsed sputtering. The nanoindentation hardness of the CrN films also increased with a decrease in the duty cycle. This enhancement of the corrosion resistance and mechanical properties of pulsed sputtered CrN films could be attributed to the densification and surface smoothness of the microstructure of the films.

A Comparative Study of HfN Coatings Deposited by DC and Pulsed DC Asymmetric Bipolar Magnetron Sputtering (DC 스퍼터법과 비대칭 바이폴라 펄스 DC 스퍼터법으로 증착된 HfN 코팅막의 물성 비교연구)

  • Jeon, Seong-Yong;Jeong, Pyeong-Geun
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2017.05a
    • /
    • pp.103.2-103.2
    • /
    • 2017
  • Nanocrystalline HfN coatings were prepared by reactively sputtering Hf metal target with N2 gas using a magnetron sputtering system operated in DC and ABPP (asymmetric bipolar pulsed plasma) condition with various duties and frequencies. The effects of duty and frequency, ranging from 75 to 100 % and 5 to 50 kHz, on the coating microstructure, crystallographic and mechanical properties were systematically investigated with FE-SEM, AFM, XRD and nanoindentation. The results show that pulsed plasma has a significant influence on coating microstructure and mechanical properties of HfN coatings. Coating microstructure evolves from the columnar structure to a highly dense one as duty decreases. Average grain size and nano hardness of HfN coatings were also investigated with various pulsed conditions.

  • PDF

Observation of Plasma Shape by Continuous dc and Pulsed dc (직류 방전과 펄스 직류 방전에 의한 플라즈마 형상 관찰)

  • Yang, Won-Kyun;Joo, Jung-Hoon
    • Journal of the Korean institute of surface engineering
    • /
    • v.42 no.3
    • /
    • pp.133-138
    • /
    • 2009
  • Effects of bipolar pulse driving frequency between 50 kHz and 250 kHz on the discharge shapes were analyzed by measuring plasma characteristics by OES (Optical Emission Spectroscopy) and Langmuir probe. Plasma characteristics were modeled by a simple electric field analysis and fluid plasma modeling. Discharge shapes by a continuous dc and bipolar pulsed dc were different as a dome-type and a vertical column-type at the cathode. From OES, the intensity of 811.5 nm wavelength, the one of the main peaks of Ar, decreased to about 43% from a continuous dc to 100 kHz. For increasing from 100 kHz to 250 kHz, the intensity of 811.5 nm wavelength also decreased by 46%. The electron density decreased by 74% and the electron temperature increased by 36% at the specific position due to the smaller and denser discharge shape for increasing pulse frequency. Through the numerical analysis, the negative glow shape of a continuous dc were similar to the electric potential distribution by FEM (Finite Element Method). For the bipolar pulsed dc, we found that the electron temperature increased to maximum 10 eV due to the voltage spikes by the fast electron acceleration generated in pre-sheath. This may induce the electrons and ions from plasma to increase the energetic substrate bombardment for the dense thin film growth.

Thin film characteristics variation of static deposition and dynamic deposition by bipolar pulsed DC magnetron sputtering (Bipolar pulsed DC magnetron sputtering에서 정적 증착과 동적 증착에 의한 박막 특성 변화)

  • Yang, Won-Gyun;Ju, Jeong-Hun
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2009.05a
    • /
    • pp.149-149
    • /
    • 2009
  • 실제 산업에서 가장 많이 사용하고 있는 in-line type system에서 Al-doped ZnO (AZO) 막을 bipolar pulsed DC sputtering을 이용해 증착하였다. 약 30 nm/sec의 속도로 기판을 타겟 좌우로 swing 하면서 동적 증착 공정을 한 AZO 박막의 columnar structure가 정적 증착일 때와 다른 형태의 zigzag-type columnar structure가 형성되었다. 투명전도막의 가장 중요한 특성인 비저항과 투과도가 동적 증착 공정일 때의 박막과 정적 증착 공정일 때의 박막이 각각 $2.5{\times}10^{-3}{\Omega}{\cdot}cm$, 78.5%와 $1.65{\times}10^{-3}{\Omega}{\cdot}cm$, 83.9% 였다. 이렇게 성장하는 막의 구조 형태에 따라 달라지는 특성 변화는 양산하는 현장에서 매우 중요한 것이며, 동적 증착 공정에서의 박막 특성 개선에 정적 증착 공정과는 다른 방법의 연구가 필요할 것이다.

  • PDF