Browse > Article
http://dx.doi.org/10.5695/JKISE.2014.47.4.168

A Comparative Study of TiAlN Coatings Deposited by DC and Pulsed DC Asymmetric Bipolar Magnetron Sputtering  

Chun, Sung-Yong (Department of Advanced Materials Science and Engineering, Mokpo National University)
Lee, Tae Yang (Department of Advanced Materials Science and Engineering, Mokpo National University)
Publication Information
Journal of the Korean institute of surface engineering / v.47, no.4, 2014 , pp. 168-173 More about this Journal
Abstract
The paper presents the comparative results of TiAlN coatings deposited by DC and pulsed DC asymmetric bipolar magnetron sputtering systems. The results show that, with the decreasing duty cycle and increasing pulse frequency, the coating morphology changes from a columnar to a dense structure, with finer grains. Pulsed sputtered TiAlN coatings showed higher hardness, higher residual stress, and smaller grain sizes than dc prepared TiAlN coatings. Moreover residual stress of pulsed sputtered TiAlN coatings increased on increasing pulse frequency. Meanwhile, the surface roughness decreased continuously with increasing pulsed DC frequency up to 50 kHz.
Keywords
Pulsed DC Sputtering; TiAlN; Asymmetric Bipolar; Duty cycle; Pulse frequency;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 A. Pan, J. E. Greene, Thin Solid Films 78 (1981) 25-34   DOI   ScienceOn
2 S. Y. Yoon, Y. B. Lee, K.H. Kim J. Kor. Inst. Surf. Eng.. 35 (2002) 193.
3 M. S. Kim, J. H. Kho, S. H. Kim, J. Kor. Inst. Surf. Eng., 43 (2010) 278.   DOI   ScienceOn
4 S. Hogmark, S. Jacobson, M. Larsson, Wear, 246 (2000) 20.   DOI   ScienceOn
5 L. Persano, A. Camposeo, P. Del Carro, E. Mele, R. Cingolani, D. Pisignano, Optics Express, 14 (2006) 1951   DOI
6 A. Moustaghfir, E. Tomasella, A. Rivaton, B. Mailhot, M. Jacquet, J. L. Gardette, Surf. Coat. Tech., 180-181 (2004) 642.   DOI   ScienceOn
7 J. Baumann, M. Markert, T. Werner, A. Ehilich, M. Rennau, Ch. Kaufmann, Micro Electron. Eng., 37 (1997) 229.
8 D. H. Yu, C. Y. Wang, X. L. Cheng, F. L. Zhang, Appl. Surf. Sci., 255 (2008) 1865.   DOI   ScienceOn
9 J. Sellers, Surf. Coat. Tech., 98 (1998) 1245.   DOI   ScienceOn
10 G. S. Kim, B. S. Kim, S. Y. Lee, J. Kor. Inst. Surf. Eng., 38 (2005) 207.
11 H. C. Barshilia, K.S. Rajam, Surf. Coat. Tech., 201 (2006) 1827.   DOI   ScienceOn
12 K. Bobzin, E. Lugscheider, M. Maes, P. Immich, S. Bolz, Thin Solid Films, 515 (2007) 3681   DOI   ScienceOn
13 S. Y. Chun, J. W. Baek, J. Kor. Inst. Surf. Eng.. 47 (2014) 100.
14 I. Petrov, P. B. Barna, L. Hultman, J. E. Greene, J. Vac. Sci. Tech. A, 21 (2003) 774.
15 N. Maazi, N. Rouag, J. Cryst, Growth, 243 (2002) 361.   DOI   ScienceOn
16 H. C. Barshilia, K. Yogesh, K. S. Rajam, Vacuum, 83 (2009) 427.
17 M. Ahlgren, H. Blomqvist, Surf. Coat. Tech., 200 (2005) 157.   DOI   ScienceOn
18 I. Petrov, L. Hultman, U. Helmersson, S. A. Barnett, J. E. Sundgern, J. E. Green, Thin Solid Films, 169 (1989) 299.   DOI   ScienceOn
19 L. Hultman, U. Helmersson, S. A. Barnett, J. E. Sundgren, J. E. Greene, J. Appl. Phys., 61 (1987) 552.   DOI
20 D. W. Hoffmann, Thin Solid Films 107 (1983) 353-358.   DOI   ScienceOn
21 S. Kim, D. M. Kim, S. Kang, H. J. Kim, J. Kor. Ceram. Soc., 46 (2009) 116.   DOI   ScienceOn
22 J. M. Lee, C. J. Lee, K. H. Lee, B. M. Kim, Trans. Nonferrous Met. Soc. China, 22 (2012) 585.   DOI   ScienceOn
23 C. P. Constable, D. B. Lewis, J. Yarwood, W. D. Munz., Surf. Coat. Tech., 184 (2004) 291-297.   DOI   ScienceOn
24 J. L. Gomez, O. Tigli, J. Mater. Sci., 48 (2013) 612.   DOI   ScienceOn
25 S. Y. Tan, X. H. Zhang, X. J. Wu, F. Fang, J. Q. Jiang, Thin Solid Films, 519 (2011) 2116.   DOI   ScienceOn