DOI QR코드

DOI QR Code

A Comparative Study of TiAlN Coatings Deposited by DC and Pulsed DC Asymmetric Bipolar Magnetron Sputtering

DC 스퍼터법과 비대칭 바이폴라 펄스 DC 스퍼터법으로 증착된 TiAlN 코팅막의 물성 비교연구

  • Chun, Sung-Yong (Department of Advanced Materials Science and Engineering, Mokpo National University) ;
  • Lee, Tae Yang (Department of Advanced Materials Science and Engineering, Mokpo National University)
  • 전성용 (목포대학교 신소재공학과) ;
  • 이태양 (목포대학교 신소재공학과)
  • Received : 2014.08.01
  • Accepted : 2014.08.25
  • Published : 2014.08.30

Abstract

The paper presents the comparative results of TiAlN coatings deposited by DC and pulsed DC asymmetric bipolar magnetron sputtering systems. The results show that, with the decreasing duty cycle and increasing pulse frequency, the coating morphology changes from a columnar to a dense structure, with finer grains. Pulsed sputtered TiAlN coatings showed higher hardness, higher residual stress, and smaller grain sizes than dc prepared TiAlN coatings. Moreover residual stress of pulsed sputtered TiAlN coatings increased on increasing pulse frequency. Meanwhile, the surface roughness decreased continuously with increasing pulsed DC frequency up to 50 kHz.

Keywords

References

  1. S. Y. Yoon, Y. B. Lee, K.H. Kim J. Kor. Inst. Surf. Eng.. 35 (2002) 193.
  2. M. S. Kim, J. H. Kho, S. H. Kim, J. Kor. Inst. Surf. Eng., 43 (2010) 278. https://doi.org/10.5695/JKISE.2010.43.6.278
  3. S. Hogmark, S. Jacobson, M. Larsson, Wear, 246 (2000) 20. https://doi.org/10.1016/S0043-1648(00)00505-6
  4. L. Persano, A. Camposeo, P. Del Carro, E. Mele, R. Cingolani, D. Pisignano, Optics Express, 14 (2006) 1951 https://doi.org/10.1364/OE.14.001951
  5. J. L. Gomez, O. Tigli, J. Mater. Sci., 48 (2013) 612. https://doi.org/10.1007/s10853-012-6938-5
  6. A. Moustaghfir, E. Tomasella, A. Rivaton, B. Mailhot, M. Jacquet, J. L. Gardette, Surf. Coat. Tech., 180-181 (2004) 642. https://doi.org/10.1016/j.surfcoat.2003.10.109
  7. J. Baumann, M. Markert, T. Werner, A. Ehilich, M. Rennau, Ch. Kaufmann, Micro Electron. Eng., 37 (1997) 229.
  8. D. H. Yu, C. Y. Wang, X. L. Cheng, F. L. Zhang, Appl. Surf. Sci., 255 (2008) 1865. https://doi.org/10.1016/j.apsusc.2008.06.204
  9. S. Y. Tan, X. H. Zhang, X. J. Wu, F. Fang, J. Q. Jiang, Thin Solid Films, 519 (2011) 2116. https://doi.org/10.1016/j.tsf.2010.10.067
  10. J. Sellers, Surf. Coat. Tech., 98 (1998) 1245. https://doi.org/10.1016/S0257-8972(97)00403-9
  11. G. S. Kim, B. S. Kim, S. Y. Lee, J. Kor. Inst. Surf. Eng., 38 (2005) 207.
  12. H. C. Barshilia, K.S. Rajam, Surf. Coat. Tech., 201 (2006) 1827. https://doi.org/10.1016/j.surfcoat.2006.03.012
  13. K. Bobzin, E. Lugscheider, M. Maes, P. Immich, S. Bolz, Thin Solid Films, 515 (2007) 3681 https://doi.org/10.1016/j.tsf.2006.11.002
  14. S. Y. Chun, J. W. Baek, J. Kor. Inst. Surf. Eng.. 47 (2014) 100.
  15. I. Petrov, P. B. Barna, L. Hultman, J. E. Greene, J. Vac. Sci. Tech. A, 21 (2003) 774.
  16. N. Maazi, N. Rouag, J. Cryst, Growth, 243 (2002) 361. https://doi.org/10.1016/S0022-0248(02)01420-3
  17. H. C. Barshilia, K. Yogesh, K. S. Rajam, Vacuum, 83 (2009) 427.
  18. M. Ahlgren, H. Blomqvist, Surf. Coat. Tech., 200 (2005) 157. https://doi.org/10.1016/j.surfcoat.2005.02.078
  19. I. Petrov, L. Hultman, U. Helmersson, S. A. Barnett, J. E. Sundgern, J. E. Green, Thin Solid Films, 169 (1989) 299. https://doi.org/10.1016/0040-6090(89)90713-X
  20. C. P. Constable, D. B. Lewis, J. Yarwood, W. D. Munz., Surf. Coat. Tech., 184 (2004) 291-297. https://doi.org/10.1016/j.surfcoat.2003.10.014
  21. D. W. Hoffmann, Thin Solid Films 107 (1983) 353-358. https://doi.org/10.1016/0040-6090(83)90296-1
  22. A. Pan, J. E. Greene, Thin Solid Films 78 (1981) 25-34 https://doi.org/10.1016/0040-6090(81)90414-4
  23. L. Hultman, U. Helmersson, S. A. Barnett, J. E. Sundgren, J. E. Greene, J. Appl. Phys., 61 (1987) 552. https://doi.org/10.1063/1.338257
  24. J. M. Lee, C. J. Lee, K. H. Lee, B. M. Kim, Trans. Nonferrous Met. Soc. China, 22 (2012) 585. https://doi.org/10.1016/S1003-6326(11)61217-X
  25. S. Kim, D. M. Kim, S. Kang, H. J. Kim, J. Kor. Ceram. Soc., 46 (2009) 116. https://doi.org/10.4191/KCERS.2009.46.1.116

Cited by

  1. Crystal Structure, Microstructure and Mechanical Properties of NbN Coatings Deposited by Asymmetric Bipolar Pulsed DC Sputtering vol.54, pp.1, 2017, https://doi.org/10.4191/kcers.2017.54.1.02
  2. Effect of Inductively Coupled Plasma on the Microstructure, Structure and Mechanical Properties of VN Coatings vol.49, pp.4, 2016, https://doi.org/10.5695/JKISE.2016.49.4.376
  3. A Comparative Study of NbN Coatings Deposited by DC and Pulsed DC Asymmetric Bipolar Magnetron Sputtering vol.48, pp.4, 2015, https://doi.org/10.5695/JKISE.2015.48.4.136
  4. Microstructure, Crystal Structure and Mechanical Properties of VN Coatings Using Asymmetric Bipolar Pulsed dc Sputtering vol.49, pp.5, 2016, https://doi.org/10.5695/JKISE.2016.49.5.461