• Title/Summary/Keyword: Biological barrier

Search Result 159, Processing Time 0.021 seconds

Zinc and Its Transporters in Epigenetics

  • Brito, Sofia;Lee, Mi-Gi;Bin, Bum-Ho;Lee, Jong-Soo
    • Molecules and Cells
    • /
    • v.43 no.4
    • /
    • pp.323-330
    • /
    • 2020
  • Epigenetic events like DNA methylation and histone modification can alter heritable phenotypes. Zinc is required for the activity of various epigenetic enzymes, such as DNA methyltransferases (DNMTs), histone acetyltransferases (HATs), histone deacetylases (HDACs), and histone demethylases, which possess several zinc binding sites. Thus, the dysregulation of zinc homeostasis can lead to epigenetic alterations. Zinc homeostasis is regulated by Zinc Transporters (ZnTs), Zrt- and Irt-like proteins (ZIPs), and the zinc storage protein metallothionein (MT). Recent advances revealed that ZIPs modulate epigenetics. ZIP10 deficiency was found to result in reduced HATs, confirming its involvement in histone acetylation for rigid skin barrier formation. ZIP13 deficiency, which is associated with Spondylocheirodysplastic Ehlers-Danlos syndrome (SCD-EDS), increases DNMT activity, leading to dysgenesis of dermis via improper gene expressions. However, the precise molecular mechanisms remain to be elucidated. Future molecular studies investigating the involvement of zinc and its transporters in epigenetics are warranted.

Plasma Bioscience and Medicines (플라즈마 바이오과학 및 의학)

  • Choi, Eun Ha
    • Vacuum Magazine
    • /
    • v.2 no.4
    • /
    • pp.9-15
    • /
    • 2015
  • Nonthermal bio-compatible plasma (bioplasma) sources and their characteristics operating at atmospheric pressure could be used for biological cell interactions, especially for plasma bioscience and medicines. The electron temperatures and plasma densities of this bioplasma are measured to be 0.7 ~ 1.8 eV and $(3-5){\times}10^{14-15}cm^{-3}$, respectively. Herein, we introduced general schematic view of the plasma-initiated ultraviolet photolysis of water inside the biological solutions or living tissue for the essential generation mechanism of the reactive hydroxyl radical [OH] and hydrogen peroxide [$H_2O_2$], which may result in apoptotic cell death in plasma bioscience and medicines. Further, we surveyed the various nonthermal bioplasma sources including plasma jet, micro-DBD (dielectric barrier discharge) and nanosecond discharged plasma. The diseased biological protein, cancer, and mutated cells could be treated by these bioplasma sources or bioplasma activated water to result in their apoptosis for new paradigm of plasma bioscience and medicines.

The Microcosm study for evaluating biobarrier application on sequential degradation of TCE products by Gasoline-Degradaing Mixed Culture

  • Lee, Jae-Sun;Lee, Si-Jin;Lee, Young-Kee;Chang, Soon-Woong
    • 한국생물공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.440-444
    • /
    • 2003
  • A new approach for ground water treatment combines a permeable Fe(0) barrier to breakdown higher chlorinated solvents like PCE and TCE with a down gradient aerobic biological treatment system to biotransform less chlorinated solvents, such as DCE and vinyl chloride (VC). The expected bacterial performance down gradient of an Fe(0) barrier was evaluated through laboratory batch experiments with a toluene-degrading mixed culture that cometabolically transforms cis-1,2-DCE and VC. The amount of cis-1,2-DCE (initially at 2,000 ppb) and VC (initially at 2,000 ppb) transformed was controlled by the initial toluene(20,000 ppb) concentration. VC was removed much more effectively than Cis-1,2-DCE, and a higher toluene concentration in comparison to the co-substrate concentrations was needed for complete co-substrate removal. Overall, the coupling of an Fe(0) barrier and subsequent biodegradation appears feasible for remediation of complex mixtures of chlorinated solvents and petroleum hydrocarbons in groundwater.

  • PDF

Triterpenoid-Containing Liposome by Micelle-to-Vesicle Transition and Their Biological Activities

  • Kang, Hyung-Seok;Park, Ji-Eun;Nam, Gae-Won;Han, Sang-Hoon;Chang, Ih-Seop
    • Proceedings of the SCSK Conference
    • /
    • 2003.09b
    • /
    • pp.319-329
    • /
    • 2003
  • Ursolic acid (UA) and oleanolic acid (OA) are pentacyclic triterpenoids which are widely distributed in plants, and their derivatives are aglycones of many naturally occurring saponins. It is known that pentacyclic acids may possibly enhance the mechanical barrier functions of cell membranes in plants. Recently, it has been reported that OA and UA have interesting biological activities on skin, such as anti-inflammatory and anti-wrinkle activities. Since triterpenoids are extremely insoluble and their solubility problem limits skin-care application, OA and UA were encapsulated in liposomes via micelle-to-vesicle transition to overcome poorly soluble property and enhance biological efficacy. Optimal molar ratio of OA to lecithin was found to exist for producing liposomes of small hydrodynamic size and liposomal suspensions without recrystallized precipitation of OA. From electron micrograph and dynamic light scattering studies, reconstituted OA-containing liposomes without severe mechanical treatment showed small hydrodynamic size about 150 nm. Wide-angle X-ray diffraction coupled with dynamic light scattering revealed that optimal amount of OA in liposome was 25.4 mole %. In biological evaluation, OA-containing liposome significantly increased filaggrin and transglutaminase as markers of keratinocyte differentiation in epidermal layer of hairless mouse, whereas ursolic acid-containing liposome did not show noticeable increase of filaggrin and transglutaminase compared to empty liposome. It is concluded that nano-scaled liposomes containing triterpenoids were spontaneously prepared by vesicular transition from mixed micelle and liposomal triterpenoids can enhance skin absorption of triterpenoid and biological efficacy.

  • PDF

Protective effects of biological feed additives on gut microbiota and the health of pigs exposed to deoxynivalenol: a review

  • Neeraja, Recharla;Sungkwon, Park;Minji, Kim;Byeonghyeon, Kim;Jin Young, Jeong
    • Journal of Animal Science and Technology
    • /
    • v.64 no.4
    • /
    • pp.640-653
    • /
    • 2022
  • Deoxynivalenol (DON) is the most common mycotoxin contaminant of cereal-based food and animal feed. The toxicity of DON is very low compared to that of other toxins; however, the most prominent signs of DON exposure include inappetence and body weight loss, which causes considerable economic losses in the livestock industry. This review summarizes critical studies on biological DON mycotoxin mitigation strategies and the respective in vitro and in vivo intestinal effects. Focus areas include growth performance, gut health in terms of intestinal histomorphology, epithelial barrier functions, the intestinal immune system and microflora, and short-chain fatty acid production in the intestines. In addition, DON detoxification and modulation of these parameters, through biological supplements, are discussed. Biological detoxification of DON using microorganisms can attenuate DON toxicity by modulating gut microbiota and improving gut health with or without influencing the growth performance of pigs. However, the use of microorganisms as feed additives to livestock for mycotoxins detoxification needs more research before commercial use.

Role of Micronutrients in Skin Health and Function

  • Park, Kyungho
    • Biomolecules & Therapeutics
    • /
    • v.23 no.3
    • /
    • pp.207-217
    • /
    • 2015
  • Skin is the first line of defense for protecting our bodies against external perturbations, including ultraviolet (UV) irradiation, mechanical/chemical stress, and bacterial infection. Nutrition is one of many factors required for the maintenance of overall skin health. An impaired nutritional status alters the structural integrity and biological function of skin, resulting in an abnormal skin barrier. In particular, the importance of micronutrients (such as certain vitamins and minerals) for skin health has been highlighted in cell culture, animal, and clinical studies. These micronutrients are employed not only as active compounds in therapeutic agents for treating certain skin diseases, but also as ingredients in cosmetic products. Here, the author describes the barrier function of the skin and the general nutritional requirements for skin health. The goal of this review is to discuss the potential roles and current knowledge of selected micronutrients in skin health and function.

Inactivation of Wilt Pathogen(Fusarium oxysporum f. sp.) using Plasma in Tomato Hydroponic Cultivation (토마토 수경재배에서 플라즈마를 이용한 시들음병균(Fusarium oxysporum f. sp.) 불활성화)

  • Dong-Seog Kim;Young-Seek Park
    • Journal of Environmental Science International
    • /
    • v.33 no.5
    • /
    • pp.323-332
    • /
    • 2024
  • Circulating hydroponic cultivation has the advantage of reducing soil and water pollution problems caused by discharge of fertilizer components because the nutrient solution is reused. However, cyclic hydroponic cultivation has a low biological buffering capacity and can cause outbreaks of infectious root pathogens. Therefore, it is necessary to develop technologies or disinfection systems to control them. This study used dielectric barrier discharge plasma, which generates various persistent oxidants, to treat Fusarium oxysporum f. sp., a pathogen that causes wilt disease. Batch and intermittent continuous inactivation experiments were conducted, and the results showed that the total residual oxidant was persistent in intermittent plasma treatment at intervals of 2-3 days, and F. oxysporum was treated efficiently. Intermittent plasma treatment did not inhibit the growth of tomatoes.

Fabrication of Disposable Protein Chip for Simultaneous Sample Detection

  • Lee, Chang-Soo;Lee, Sang-Ho;Kim, Yun-Gon;Oh, Min-Kyu;Hwang, Taek-Sung;Rhee, Young-Woo;Song, Hwan-Moon;Kim, Bo-Yeol;Kim, Yong-Kweon;Kim, Byung-Gee
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.11 no.5
    • /
    • pp.455-461
    • /
    • 2006
  • In this study, we have described a method for the fabrication of a protein chip on silicon substrate using hydrophobic thin film and microfluidic channels, for the simultaneous detection of multiple targets in samples. The use of hydrophobic thin film provides for a physical, chemical, and biological barrier for protein patterning. The microfluidic channels create four protein patterned strips on the silicon surfaces with a high signal-to-noise ratio. The feasibility of the protein chips was determined in order to discriminate between each protein interaction in a mixture sample that included biotin, ovalbumin, hepatitis B antigen, and hepatitis C antigen. In the fabrication of the multiplexed assay system, the utilization of the hydrophobic thin film and the microfluidic networks constitutes a more convenient method for the development of biosensors or biochips. This technique may be applicable to the simultaneous evaluation of multiple protein-protein interactions.

Study on the Atmospheric Plasma Characteristics of Dielectric Barrier Discharge due to a Variation of the Duty Ratio of Pulse Modulation (펄스변조의 듀티비 변경에 따른 DBD 대기압 플라즈마 특성 연구)

  • Park, Jong-in;Hwang, Sang-hyuk;Jo, Tae Hoon;Yun, Myoung Soo;Kwak, Hyoung sin;Jin, Gi nam;Jeon, Buil;Choi, Eun Ha;Kwon, Gi-Chung
    • Korean Journal of Materials Research
    • /
    • v.25 no.11
    • /
    • pp.616-621
    • /
    • 2015
  • Atmospheric pressure plasma is used in the biological and medical fields. Miniaturization and safety are important in the application of apply atmospheric plasma to bio devices. In this study, we made a small, pocket-sized inverter for the discharge of atmospheric plasma. We used pulse power to control the neutral gas temperature at which the, when plasma was discharged. We used direct current of 5 V of bias(voltage). The output voltage is about 1 to 2 kilo volts the frequency is about 80 kilo hertz. We analyzsed the characteristics of the atmospheric plasma using OES(Optical emission spectroscopy) and the Current-Voltage characteristic of pulse power. By calculating of the current voltage characteristics, we were able to determine that, when the duty ratio increased, the power that actually effects the plasma discharge also increased. To apply atmospheric plasma to human organisms, the temperature is the most important factor, we were able to control the temperature by modulating the pulse power duty ratio. This means we can use atmospheric plasma on the human body or in other areas of the medical field.

A comparative study of the clinical effects of Fibrin adhesive and Calcium sulfate barrier in the treatment of mandibular class II furcations using Xenograft (하악 2급 이개부 병변에서 이종골 이식시 Fibrin adhesive와 Calcium sulfate barrier의 사용에 타른 임상적 효과에 대한 비교 연구)

  • Kwak, Seung-Ho;Chung, Chin-Hyung;Lim, Sung-Bin;Hong, Ki-Seok
    • Journal of Periodontal and Implant Science
    • /
    • v.36 no.2
    • /
    • pp.515-529
    • /
    • 2006
  • Periodontal regeneration refers to the restoration of bone, cementum and periodontal ligament to their original levels before damage from periodontal disease process. Various surgical techniques to the promotion of periodontal regeneration have been used. Bone graft and guided tissue regeneration have used for the regeneration of furcation involvements which caused by periodontal disease. Fibrin adhesive is agents that have been shown to be effective in periodontal regeneration and biological carrier. Calcium sulfate which is one of the resorbable barrier materials has used for guided tissue regeneration. The purpose of this study was to compare the clinical effects between bone graft using fibrin adhesive and calcium sulfate barrier in the mandibular class II furcation involvement. For the study, twenty-six class II furcation involved teeth were surgically treated. 13 furcation defects(test group) were treated with bonegraft and fibrin adhesive and the others(control group) were treated with bone graft and calcium sulfate barrier. Pocket depth, clinical attachment level and gingival recession were measured at baseline, postoperative 3 and 6 months. The results of the study are as follows: 1. The change of pocket depth and clinical attachment level in both groups was decreased significantly at 3, 6 months than at baseline(p<0.05). 2. The change of gingival recession in both groups was increased significantly at 3, 6 months than at baseline(p<0.05). 3. The change of pocket depth and clinical attachment level in both groups was decreased at 3, 6 months, and the change of gingival recession in both groups was increased at 3, 6 months but there were no statistically or clinically significant differences with both groups. 4. The significant reduction of the pocket depth and clinical attachment level exhibited marked changes at 3 months in both groups. In conclusion, the results of this study suggest that there are no statistically or clinically significant differences between fibrin adhesive and calcium sulfate barrier in the treatment of class II furcations using xenograft.