DOI QR코드

DOI QR Code

Zinc and Its Transporters in Epigenetics

  • Brito, Sofia (Department of Biological Sciences, Ajou University) ;
  • Lee, Mi-Gi (Bio-Center, Gyeonggido Business and Science Accelerator) ;
  • Bin, Bum-Ho (Department of Biological Sciences, Ajou University) ;
  • Lee, Jong-Soo (Department of Biological Sciences, Ajou University)
  • Received : 2020.01.22
  • Accepted : 2020.04.04
  • Published : 2020.04.30

Abstract

Epigenetic events like DNA methylation and histone modification can alter heritable phenotypes. Zinc is required for the activity of various epigenetic enzymes, such as DNA methyltransferases (DNMTs), histone acetyltransferases (HATs), histone deacetylases (HDACs), and histone demethylases, which possess several zinc binding sites. Thus, the dysregulation of zinc homeostasis can lead to epigenetic alterations. Zinc homeostasis is regulated by Zinc Transporters (ZnTs), Zrt- and Irt-like proteins (ZIPs), and the zinc storage protein metallothionein (MT). Recent advances revealed that ZIPs modulate epigenetics. ZIP10 deficiency was found to result in reduced HATs, confirming its involvement in histone acetylation for rigid skin barrier formation. ZIP13 deficiency, which is associated with Spondylocheirodysplastic Ehlers-Danlos syndrome (SCD-EDS), increases DNMT activity, leading to dysgenesis of dermis via improper gene expressions. However, the precise molecular mechanisms remain to be elucidated. Future molecular studies investigating the involvement of zinc and its transporters in epigenetics are warranted.

Keywords

References

  1. Ahn, H.J., Hwang, S.Y., Nguyen, N.H., Lee, I.J., Lee, E.J., Seong, J., and Lee, J.S. (2019). Radiation-induced CXCL12 upregulation via histone modification at the promoter in the tumor microenvironment of hepatocellular carcinoma. Mol. Cells 42, 530. https://doi.org/10.14348/molcells.2019.2280
  2. Algahtani, H. and Shirah, B. (2017). A novel mutation in the DNMT1 gene in a patient presenting with pure cerebellar ataxia. J. Genet. Med. 14, 71-74. https://doi.org/10.5734/JGM.2017.14.2.71
  3. Andreini, C., Banci, L., Bertini, I., and Rosato, A. (2006). Counting the zincproteins encoded in the human genome. J. Proteome Res. 5, 196-201. https://doi.org/10.1021/pr050361j
  4. Avvakumov, N. and Cote, J. (2007). The MYST family of histone acetyltransferases and their intimate links to cancer. Oncogene 26, 5395-5407. https://doi.org/10.1038/sj.onc.1210608
  5. Berger, S.L., Kouzarides, T., Shiekhattar, R., and Shilatifard, A. (2009). An operational definition of epigenetics. Genes Dev. 23, 781-783. https://doi.org/10.1101/gad.1787609
  6. Bin, B.H., Bhin, J., Kim, N.H., Lee, S., Jung, H., Kim, D., Hwang, D., Fukada, T., Lee, A., Lee, T.R., et al. (2016). An acrodermatitis enteropathica-associated Zn transporter, ZIP4, regulates human epidermal homeostasis. J. Investig. Dermatol. 137, 874-883. https://doi.org/10.1016/j.jid.2016.11.028
  7. Bin, B.H., Bhin, J., Takaishi, M., Toyoshima, K.E., Kawamata, S., Ito, K., Hara, T., Watanabe, T., Irié, T., Takagashi, T., et al. (2017). Requirement of zinc transporter ZIP10 for epidermal development: implication of the ZIP10-p63 axis in epithelial homeostasis. Proc. Natl. Acad. Sci. U. S. A. 114, 12243-12248. https://doi.org/10.1073/pnas.1710726114
  8. Bin, B.H., Fukada, T., Hosaka, T., Yamasaki, S., Ohashi, W., Hojyo, S., Miyai, T., Nishida, K., Yokoyama, S., and Hirano, T. (2011). Biochemical characterization of human ZIP13 protein: a homo-dimerized zinc transporter involved in the spondylocheiro dysplastic Ehlers-Danlos syndrome. J. Biol. Chem. 286, 40255-40265. https://doi.org/10.1074/jbc.M111.256784
  9. Bin, B.H., Hojyo, S., Hosaka, T., Bhin, J., Kano, H., Miyai, T., Ikeda, M., Kimura‐ Someya, T., Shirouzu, M., Cho., E.G., et al. (2014). Molecular pathogenesis of spondylocheirodysplastic Ehlers‐Danlos syndrome caused by mutant ZIP13 proteins. EMBO Mol. Med. 6, 1028-1042. https://doi.org/10.15252/emmm.201303809
  10. Bin, B.H., Hojyo, S., Seo, J., Hara, T., Takagishi, T., Mishima, K., and Fukada, T. (2018b). The role of the Slc39a family of zinc transporters in zinc homeostasis in skin. Nutrients 10, 219. https://doi.org/10.3390/nu10020219
  11. Bin, B.H., Lee, S.H., Bhin, J., Irié, T., Kim, S., Seo, J., Mishima, K., Lee, T.R., Hwang, D., Fukada, T., et al. (2019). The epithelial zinc transporter ZIP10 epigenetically regulates human epidermal homeostasis by modulating histone acetyltransferase activity. Br. J. Dermatol. 180, 869-880. https://doi.org/10.1111/bjd.17339
  12. Bin, B.H., Seo, J., and Kim, S.T. (2018a). Function, structure, and transport aspects of ZIP and ZnT Zinc transporters in immune cells. J. Immunol. Res. 2018, 9365747. https://doi.org/10.1155/2018/9365747
  13. Bottomley, M.J., Surdo, P.L., Giovine, D., Cirillo, A., Scarpelli, R., Ferrigno, F., Jones, P., Neddermann, P., De Francesco, R., Steinkühler, C., et al. (2008). Structural and functional analysis of the human HDAC4 catalytic domain reveals a regulatory structural zinc-binding domain. J. Biol. Chem. 283, 26694-26704. https://doi.org/10.1074/jbc.M803514200
  14. Burg, J.M., Link, J.E., Morgan, B.S., Heller, F.J., Hargrove, A.E., and Mccafferty, D.G. (2015). KDM1 class flavin-dependent protein lysine demethylases. Biopolymers 104, 213-246. https://doi.org/10.1002/bip.22643
  15. Chasapis, C.T. and Loutsidou, A.C. (2012). Zinc and human health: an update. Arch. Toxicol. 86, 521-534. https://doi.org/10.1007/s00204-011-0775-1
  16. Chedin, F., Lieber, M.R., and Hsieh, C.L. (2002). The DNA methyltransferase like protein DNMT3L stimulates de novo methylation by Dnmt3a. Proc. Natl. Acad. Sci. U. S. A. 99, 16916-16921. https://doi.org/10.1073/pnas.262443999
  17. Chrun, E.S., Modolo, F., and Daniel, F.I. (2017). Histone modifications: a review about the presence of this epigenetic phenomenon in carcinogenesis. Pathol. Res. Pract. 213, 1329-1339. https://doi.org/10.1016/j.prp.2017.06.013
  18. Coleman, J.E. (1992). Zinc proteins: enzymes, storage replication proteins. Annu. Rev. Biochem. 61, 897-946. https://doi.org/10.1146/annurev.bi.61.070192.004341
  19. Cui, D. and Xu, X. (2018). DNA methyltransferases, DNA methylation, and age-associated cognitive function. Int. J. Mol. Sci. 19, 1315. https://doi.org/10.3390/ijms19051315
  20. Dancy, B.M. and Cole, P.A. (2015). Protein lysine acetylation by p300/CBP. Chem. Rev. 115, 2419-2452. https://doi.org/10.1021/cr500452k
  21. Du, J., Johnson, L.M., Jacobsen, S.E., and Patel, D.J. (2015). DNA methylation pathways and their crosstalk with histone methylation. Nat. Rev. Mol. Cell Biol. 16, 519-532. https://doi.org/10.1038/nrm4043
  22. Eide, D.J. (2006). Zinc transporters and the cellular trafficking of zinc. Biochim. Biophys. Acta - Mol. Cell Res. 1763, 711-722. https://doi.org/10.1016/j.bbamcr.2006.03.005
  23. Fatemi, M., Hermann, A., Pradhan, S., and Jeltsch, A. (2001). The activity of the murine DNA methyltransferase Dnmt1 is controlled by interaction of the catalytic domain with the N-terminal part of the enzyme leading to an allosteric activation of the enzyme after binding to methylated DNA. J. Mol. Biol. 309, 1189-1199. https://doi.org/10.1006/jmbi.2001.4709
  24. Frauer, C., Rottach, A., Meilinger, D., Bultmann, S., Fellinger, K., Hasenoder, S., Wang, M., Qin, W., Soding, J., Spada, F., et al. (2011). Different binding properties and function of CXXC zinc finger domains in Dnmt1 and Tet1. PLoS One 6, e16627. https://doi.org/10.1371/journal.pone.0016627
  25. Fukada, T., Civic, N., Furuichi, T., Shimoda, S., Mishima, K., Higashiyama, H., Idaira, Y., Asada, Y., Kitamura, H., Yamasaki, H., et al. (2008). The zinc transporter SLC39A13/ZIP13 is required for connective tissue development; its involvement in BMP/TGF-${\beta}$ signaling pathways. PLoS One 3, e3642. https://doi.org/10.1371/journal.pone.0003642
  26. Fukada, T., Yamasaki, S., Nishida, K., Murakami, M., and Hirano, T. (2011). Zinc homeostasis and signaling in health and diseases. J. Biol. Inorg. Chem. 16, 1123-1134. https://doi.org/10.1007/s00775-011-0797-4
  27. Fukunaka, A., Fukada, T., Bhin, J., Suzuki, L., Tsuzuki, T., Takamine, Y., Bin, B.H., Yoshihara, T., Ichinoseki-Sekine, N., Naito, H., et al. (2017). Zinc transporter ZIP13 suppresses beige adipocyte biogenesis and energy expenditure by regulating C/EBP-${\beta}$ expression. PLoS Genet. 13, e1006950. https://doi.org/10.1371/journal.pgen.1006950
  28. Goll, M.G., Kirpekar, F., Maggert, K.A., Yoder, J.A., Hsieh, C.L., Zhang, X., Golic, K.G., Jacobsen, S.E., and Bestor, T.H. (2006). Methylation of tRNAAsp by the DNA methyltransferase homolog Dnmt2. Science 311, 395-398. https://doi.org/10.1126/science.1120976
  29. Gowher, H. and Jeltsch, A. (2018). Mammalian DNA methyltransferases: new discoveries and open questions. Biochem. Soc. Trans. 46, 1191-1202. https://doi.org/10.1042/BST20170574
  30. Guerinot, M.L. (2000). The ZIP family of metal transporters. Biochim. Biophys. Acta - Biomembr. 1465, 190-198. https://doi.org/10.1016/S0005-2736(00)00138-3
  31. Hojyo, S., Miyai, T., Fujishiro, H., Kawamura, M., Yasuda, T., Hijikata, A., Bin, B.H., Irié, T., Tanaka, J., Atsumi, T., et al. (2014). Zinc transporter SLC39A10/ ZIP10 controls humoral immunity by modulating B-cell receptor signal strength. Proc. Natl. Acad. Sci. U. S. A. 111, 11786-11791. https://doi.org/10.1073/pnas.1323557111
  32. Ivanov, A.V., Peng, H., Yurchenko, V., Yap, K.L., Negorev, D.G., Schultz, D.C., Psulkowski, E., Fredericks, W.J., White, D.E., Maul, G.G., et al. (2007). PHD domain-mediated E3 ligase activity directs intramolecular sumoylation of an adjacent bromodomain required for gene silencing. Mol. Cell 28, 823-837. https://doi.org/10.1016/j.molcel.2007.11.012
  33. Jeltsch, A. and Jurkowska, R.Z. (2016). Allosteric control of mammalian DNA methyltransferases - a new regulatory paradigm. Nucleic Acids Res. 44, 8556-8575. https://doi.org/10.1093/nar/gkw723
  34. Jeong, J. and Eide, D.J. (2013). The SLC39 family of zinc transporters. Mol. Aspects Med. 34, 612-619. https://doi.org/10.1016/j.mam.2012.05.011
  35. Jurkowska, R.Z., Jurkowski, T.P., and Jeltsch, A. (2011). Structure and function of mammalian DNA methyltransferases. ChemBioChem 12, 206-222. https://doi.org/10.1002/cbic.201000195
  36. Kambe, T., Nishito, Y., and Fukue, K. (2017). Zinc transporters in health and disease. In Molecular Genetic, and Nutritional Aspects of Major and Trace Minerals, J. Collins, ed. (Cambridge MA: Academic Press), pp. 283-291.
  37. Kambe, T., Tsuji, T., Hashimoto, A., and Itsumura, N. (2015). The physiological, biochemical, and molecular roles of zinc transporters in zinc homeostasis. Physiol. Rev. 95, 749-784. https://doi.org/10.1152/physrev.00035.2014
  38. Kelly, E.J., Quaife, C.J., Froelick, G.J., and Palmiter, R.D. (1996). Metallothionein I and II protect against zinc deficiency and zinc toxicity in mice. J. Nutr. 126, 1782-1790.
  39. Klimasauskas, S., Kumar, S., Roberts, R.J., and Cheng, X. (1994). Hhal methyltransferase flips its target base out of the DNA helix. Cell 76, 357-369. https://doi.org/10.1016/0092-8674(94)90342-5
  40. Kuo, M.H. and Allis, C.D. (1998). Roles of histone acetyltransferases and deacetylases in gene regulation. BioEssays 20, 615-626. https://doi.org/10.1002/(SICI)1521-1878(199808)20:8<615::AID-BIES4>3.0.CO;2-H
  41. Laird, P.W. and Jaenisch, R. (1996). The role of DNA methylation in cancer. Annu. Rev. Genet. 30, 441-464. https://doi.org/10.1146/annurev.genet.30.1.441
  42. Lee, M.G. and Bin, B.H. (2019). Different actions of intracellular zinc transporters ZIP7 and ZIP13 are essential for dermal development. Int. J. Mol. Sci. 20, 3941. https://doi.org/10.3390/ijms20163941
  43. Lee, M.G., Choi, M.A., Chae, S., Kang, M.A., Jo, H., Baek, J., In, K.R., Park, H., Heo, H., Jang, D., et al. (2019). Loss of the dermis zinc transporter ZIP13 promotes the mildness of fibrosarcoma by inhibiting autophagy. Sci. Rep. 9, 1-11. https://doi.org/10.1038/s41598-018-37186-2
  44. Li, H., Ilin, S., Wang, W., Duncan, E.M., Wysocka, J., Allis, C.D., and Patel, D.J. (2006). Molecular basis for site-specific read-out of histone H3K4me3 by the BPTF PHD finger of NURF. Nature 442, 91-95. https://doi.org/10.1038/nature04802
  45. Lu, M. and Fu, D. (2007). Structure of the zinc transporter YiiP. Science 317, 1746-1748. https://doi.org/10.1126/science.1143748
  46. Lyko, F. (2017). The DNA methyltransferase family: a versatile toolkit for epigenetic regulation. Nat. Rev. Genet. 19, 81-92. https://doi.org/10.1038/nrg.2017.80
  47. Macdonald, R.S. (2000). The role of zinc in growth and cell proliferation. J. Nutr. 130, 1500S-1508S. https://doi.org/10.1093/jn/130.5.1500S
  48. Martínez-redondo, P. and Vaquero, A. (2013). The diversity of histone versus nonhistone sirtuin substrates. Genes Cancer 4, 148-163. https://doi.org/10.1177/1947601913483767
  49. Miyai, T., Hojyo, S., Ikawa, T., Kawamura, M., Irié, T., Ogura, H., Hijikata, A., Bin, B.H., Yasuda, T., Kitamura, H., et al. (2014). Zinc transporter SLC39A10/ZIP10 facilitates antiapoptotic signaling during early B-cell development. Proc. Natl. Acad. Sci. U. S. A. 111, 11780-11785. https://doi.org/10.1073/pnas.1323549111
  50. Moore, L.D., Le, T., and Fan, G. (2013). DNA methylation and its basic function. Neuropsychopharmacology 38, 23-38. https://doi.org/10.1038/npp.2012.112
  51. Nakajima, K., Lee, M.G., Bin, B.H., Hara, T., Takagishi, T., Chae, S., Sano, S., and Fukada, T. (2020). Possible involvement of zinc transporter ZIP10 in atopic dermatitis. J. Dermatol. 47, e51-e53.
  52. Ooi, S.K., Qiu, C., Bernstein, E., Li, K., Jia, D., Yang, Z., Erdjument-Bromage, H., Tempst, P., Lin, S., Allis, C., et al. (2007). DNMT3L connects unmethylated lysine 4 of histone H3 to de novo methylation of DNA. Nature 448, 714-717. https://doi.org/10.1038/nature05987
  53. Perez, Y., Shorer, Z., Liani-Leibson, K., Chabosseau, P., Kadir, R., Volodarsky, M., Halperin, D., Barber-Zucker, S., Shalev, H., Schreiber, R., et al. (2017). SLC30A9 mutation affecting intracellular zinc homeostasis causes a novel cerebro-renal syndrome. Brain 140, 928-939. https://doi.org/10.1093/brain/awx013
  54. Razin, S.V., Borunova, V.V., Maksimenko, O.G., and Kantidze, O.L. (2012). Cys2His2 zinc finger protein family: classification, functions, and major members. Biochemistry Mosc. 77, 217-226. https://doi.org/10.1134/S0006297912030017
  55. Rink, L. and Gabriel, P. (2000). Zinc and the immune system. Proc. Nutr. Soc. 59, 541-552. https://doi.org/10.1017/S0029665100000781
  56. Robertson, K.D. (2005). DNA methylation and human disease. Nat. Rev. Genet. 6, 597. https://doi.org/10.1038/nrg1655
  57. Roesijadi, G. (1996). Metallothionein and its role in toxic metal regulation. Comp. Biochem. Physiol. C Pharmacol. Toxicol. Endocrinol. 113, 117-123. https://doi.org/10.1016/0742-8413(95)02077-2
  58. Rossler, T. and Marschalek, R. (2013). An alternative splice process renders the MLL protein either into a transcriptional activator or repressor. Pharmazie 68, 601-607.
  59. Roth, S.Y., Denu, J.M., and Allis, C.D. (2001). Histone acetyltransferases. Annu. Rev. Biochem. 70, 81-120. https://doi.org/10.1146/annurev.biochem.70.1.81
  60. Ruttkay-Nedecky, B., Nejdl, L., Gumulec, J., Zitka, O., Masarik, M., Eckschlager, T., Stiborova, M., Adam, V., and Kizek, R. (2013). The role of metallothionein in oxidative stress. Int. J. Mol. Sci. 14, 6044-6066. https://doi.org/10.3390/ijms14036044
  61. Schuetz, A., Min, J., Allali-hassani, A., Schapira, M., Shuen, M., Loppnau, P., Mazitschek, R., Kwiatkowski, N.P., Lewis, T.A., Maglathin, R.L., et al. (2008). Human HDAC7 harbors a class IIa histone deacetylase-specific zinc binding motif and cryptic deacetylase activity. J. Biol. Chem. 283, 11355-11363. https://doi.org/10.1074/jbc.M707362200
  62. Seto, E. and Yoshida, M. (2014). Erasers of histone acetylation: the histone deacetylase enzymes. Cold Spring Harb. Perspect. Biol. 6, a018713. https://doi.org/10.1101/cshperspect.a018713
  63. Shi, Y. and Whetstine, J.R. (2007). Dynamic regulation of histone lysine methylation by demethylases. Mol. Cell 25, 1-14. https://doi.org/10.1016/j.molcel.2006.12.010
  64. Slotkin, R.K. and Martienssen, R. (2007). Transposable elements and the epigenetic regulation of the genome. Nat. Rev. Genet. 8, 272-285. https://doi.org/10.1038/nrg2072
  65. Suhy, D.A., Simon, K.D., Linzer, D.I.H., and Halloran, T.V.O. (1999). Metallothionein is part of a zinc-scavenging mechanism for cell survival under conditions of extreme zinc deprivation. J. Biol. Chem. 274, 9183-9192. https://doi.org/10.1074/jbc.274.14.9183
  66. Taylor, K.M. and Nicholson, R.I. (2003). The LZT proteins; the LIV-1 subfamily of zinc transporters. Biochim. Biophys. Acta - Biomembr. 1611, 16-30. https://doi.org/10.1016/S0005-2736(03)00048-8
  67. Vallee, B.L. and Auld, D.S. (1990). Zinc coordination, function, and structure of zinc enzymes and other proteins. Biochemistry 29, 5647-5659. https://doi.org/10.1021/bi00476a001
  68. Vannini, A., Volpari, C., Filocamo, G., Casavola, E.C., Brunetti, M., Renzoni, D., Chakravarty, P., Paolini, C., De Francesco, R., Gallinari, P., et al. (2004). Crystal structure of a eukaryotic zinc-dependent histone deacetylase, human HDAC8, complexed with a hydroxamic acid inhibitor. Proc. Natl. Acad. Sci. U. S. A. 101, 15064-15069. https://doi.org/10.1073/pnas.0404603101
  69. Verdone, L., Agricola, E., Caserta, M., and Di Mauro, E. (2006). Histone acetylation in gene regulation. Brief. Funct. Genomic. Proteomic. 5, 209-221. https://doi.org/10.1093/bfgp/ell028
  70. Wade, P.A., Pruss, D., and Wolffe, A.P. (1997). Histone acetylation: chromatin in action. Trends Biochem. Sci. 22, 128-132. https://doi.org/10.1016/S0968-0004(97)01016-5
  71. Walker, C.F. and Black, R.E. (2004). Zinc and the risk for infectious disease. Annu. Rev. Nutr. 24, 255-275. https://doi.org/10.1146/annurev.nutr.23.011702.073054
  72. Yamasaki, S., Sakata-Sogawa, K., Hasegawa, A., Suzuki, T., Kabu, K., Sato, E., Kurosaki, T., Yamashita, S., Tokunaga, M., Nishida, K., et al. (2007). Zinc is a novel intracellular second messenger. J. Cell Biol. 177, 637-645. https://doi.org/10.1083/jcb.200702081
  73. Yan, M., Yang, X., Wang, H., and Shao, Q. (2018). The critical role of histone lysine demethylase KDM2B in cancer. Am. J. Transl. Res. 10, 2222.
  74. Yuan, H. and Marmorstein, R. (2013). Histone acetyltransferases: rising ancient counterparts to protein kinases. Biopolymers 99, 98-111. https://doi.org/10.1002/bip.22128
  75. Zeng, Y. and Chen, T. (2019). DNA methylation reprogramming during mammalian development. Genes 10, 257. https://doi.org/10.3390/genes10040257
  76. Zhang, Q., Qi, S., Xu, M., Yu, L., Tao, Y., Deng, Z., Wu, W., Li, J., Chen, Z., and Wong, J. (2013). Structure-function analysis reveals a novel mechanism for regulation of histone demethylase LSD2/AOF1/KDM1b. Cell Res. 23, 225-241. https://doi.org/10.1038/cr.2012.177
  77. Zhang, Z.M., Liu, S., Lin, K., Luo, Y., Perry, J.J., Wang, Y., and Song, J. (2015). Crystal structure of human DNA methyltransferase 1. J. Mol. Biol. 427, 2520-2531. https://doi.org/10.1016/j.jmb.2015.06.001

Cited by

  1. Pan-Cancer Analysis of the Solute Carrier Family 39 Genes in Relation to Oncogenic, Immune Infiltrating, and Therapeutic Targets vol.12, 2020, https://doi.org/10.3389/fgene.2021.757582
  2. The role of labile Zn2+ and Zn2+-transporters in the pathophysiology of mitochondria dysfunction in cardiomyocytes vol.476, pp.2, 2021, https://doi.org/10.1007/s11010-020-03964-8
  3. Zinc Metalloproteins in Epigenetics and Their Crosstalk vol.11, pp.3, 2020, https://doi.org/10.3390/life11030186
  4. A potential screening method for epigenetic drugs: uncovering stress-induced gene silencing in Chlamydomonas vol.55, pp.5, 2021, https://doi.org/10.1080/10715762.2021.1876231
  5. Zinc as a Drug for Wilson’s Disease, Non-Alcoholic Liver Disease and COVID-19-Related Liver Injury vol.26, pp.21, 2020, https://doi.org/10.3390/molecules26216614