Browse > Article
http://dx.doi.org/10.14348/molcells.2020.0026

Zinc and Its Transporters in Epigenetics  

Brito, Sofia (Department of Biological Sciences, Ajou University)
Lee, Mi-Gi (Bio-Center, Gyeonggido Business and Science Accelerator)
Bin, Bum-Ho (Department of Biological Sciences, Ajou University)
Lee, Jong-Soo (Department of Biological Sciences, Ajou University)
Abstract
Epigenetic events like DNA methylation and histone modification can alter heritable phenotypes. Zinc is required for the activity of various epigenetic enzymes, such as DNA methyltransferases (DNMTs), histone acetyltransferases (HATs), histone deacetylases (HDACs), and histone demethylases, which possess several zinc binding sites. Thus, the dysregulation of zinc homeostasis can lead to epigenetic alterations. Zinc homeostasis is regulated by Zinc Transporters (ZnTs), Zrt- and Irt-like proteins (ZIPs), and the zinc storage protein metallothionein (MT). Recent advances revealed that ZIPs modulate epigenetics. ZIP10 deficiency was found to result in reduced HATs, confirming its involvement in histone acetylation for rigid skin barrier formation. ZIP13 deficiency, which is associated with Spondylocheirodysplastic Ehlers-Danlos syndrome (SCD-EDS), increases DNMT activity, leading to dysgenesis of dermis via improper gene expressions. However, the precise molecular mechanisms remain to be elucidated. Future molecular studies investigating the involvement of zinc and its transporters in epigenetics are warranted.
Keywords
epigenetics; zinc; zinc transporter;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Zhang, Z.M., Liu, S., Lin, K., Luo, Y., Perry, J.J., Wang, Y., and Song, J. (2015). Crystal structure of human DNA methyltransferase 1. J. Mol. Biol. 427, 2520-2531.   DOI
2 Taylor, K.M. and Nicholson, R.I. (2003). The LZT proteins; the LIV-1 subfamily of zinc transporters. Biochim. Biophys. Acta - Biomembr. 1611, 16-30.   DOI
3 Vallee, B.L. and Auld, D.S. (1990). Zinc coordination, function, and structure of zinc enzymes and other proteins. Biochemistry 29, 5647-5659.   DOI
4 Vannini, A., Volpari, C., Filocamo, G., Casavola, E.C., Brunetti, M., Renzoni, D., Chakravarty, P., Paolini, C., De Francesco, R., Gallinari, P., et al. (2004). Crystal structure of a eukaryotic zinc-dependent histone deacetylase, human HDAC8, complexed with a hydroxamic acid inhibitor. Proc. Natl. Acad. Sci. U. S. A. 101, 15064-15069.   DOI
5 Verdone, L., Agricola, E., Caserta, M., and Di Mauro, E. (2006). Histone acetylation in gene regulation. Brief. Funct. Genomic. Proteomic. 5, 209-221.   DOI
6 Wade, P.A., Pruss, D., and Wolffe, A.P. (1997). Histone acetylation: chromatin in action. Trends Biochem. Sci. 22, 128-132.   DOI
7 Walker, C.F. and Black, R.E. (2004). Zinc and the risk for infectious disease. Annu. Rev. Nutr. 24, 255-275.   DOI
8 Yamasaki, S., Sakata-Sogawa, K., Hasegawa, A., Suzuki, T., Kabu, K., Sato, E., Kurosaki, T., Yamashita, S., Tokunaga, M., Nishida, K., et al. (2007). Zinc is a novel intracellular second messenger. J. Cell Biol. 177, 637-645.   DOI
9 Bin, B.H., Hojyo, S., Seo, J., Hara, T., Takagishi, T., Mishima, K., and Fukada, T. (2018b). The role of the Slc39a family of zinc transporters in zinc homeostasis in skin. Nutrients 10, 219.   DOI
10 Bin, B.H., Lee, S.H., Bhin, J., Irié, T., Kim, S., Seo, J., Mishima, K., Lee, T.R., Hwang, D., Fukada, T., et al. (2019). The epithelial zinc transporter ZIP10 epigenetically regulates human epidermal homeostasis by modulating histone acetyltransferase activity. Br. J. Dermatol. 180, 869-880.   DOI
11 Roth, S.Y., Denu, J.M., and Allis, C.D. (2001). Histone acetyltransferases. Annu. Rev. Biochem. 70, 81-120.   DOI
12 Yan, M., Yang, X., Wang, H., and Shao, Q. (2018). The critical role of histone lysine demethylase KDM2B in cancer. Am. J. Transl. Res. 10, 2222.
13 Yuan, H. and Marmorstein, R. (2013). Histone acetyltransferases: rising ancient counterparts to protein kinases. Biopolymers 99, 98-111.   DOI
14 Bin, B.H., Seo, J., and Kim, S.T. (2018a). Function, structure, and transport aspects of ZIP and ZnT Zinc transporters in immune cells. J. Immunol. Res. 2018, 9365747.   DOI
15 Bottomley, M.J., Surdo, P.L., Giovine, D., Cirillo, A., Scarpelli, R., Ferrigno, F., Jones, P., Neddermann, P., De Francesco, R., Steinkühler, C., et al. (2008). Structural and functional analysis of the human HDAC4 catalytic domain reveals a regulatory structural zinc-binding domain. J. Biol. Chem. 283, 26694-26704.   DOI
16 Burg, J.M., Link, J.E., Morgan, B.S., Heller, F.J., Hargrove, A.E., and Mccafferty, D.G. (2015). KDM1 class flavin-dependent protein lysine demethylases. Biopolymers 104, 213-246.   DOI
17 Zeng, Y. and Chen, T. (2019). DNA methylation reprogramming during mammalian development. Genes 10, 257.   DOI
18 Rossler, T. and Marschalek, R. (2013). An alternative splice process renders the MLL protein either into a transcriptional activator or repressor. Pharmazie 68, 601-607.
19 Ruttkay-Nedecky, B., Nejdl, L., Gumulec, J., Zitka, O., Masarik, M., Eckschlager, T., Stiborova, M., Adam, V., and Kizek, R. (2013). The role of metallothionein in oxidative stress. Int. J. Mol. Sci. 14, 6044-6066.   DOI
20 Schuetz, A., Min, J., Allali-hassani, A., Schapira, M., Shuen, M., Loppnau, P., Mazitschek, R., Kwiatkowski, N.P., Lewis, T.A., Maglathin, R.L., et al. (2008). Human HDAC7 harbors a class IIa histone deacetylase-specific zinc binding motif and cryptic deacetylase activity. J. Biol. Chem. 283, 11355-11363.   DOI
21 Seto, E. and Yoshida, M. (2014). Erasers of histone acetylation: the histone deacetylase enzymes. Cold Spring Harb. Perspect. Biol. 6, a018713.   DOI
22 Coleman, J.E. (1992). Zinc proteins: enzymes, storage replication proteins. Annu. Rev. Biochem. 61, 897-946.   DOI
23 Chasapis, C.T. and Loutsidou, A.C. (2012). Zinc and human health: an update. Arch. Toxicol. 86, 521-534.   DOI
24 Chedin, F., Lieber, M.R., and Hsieh, C.L. (2002). The DNA methyltransferase like protein DNMT3L stimulates de novo methylation by Dnmt3a. Proc. Natl. Acad. Sci. U. S. A. 99, 16916-16921.   DOI
25 Chrun, E.S., Modolo, F., and Daniel, F.I. (2017). Histone modifications: a review about the presence of this epigenetic phenomenon in carcinogenesis. Pathol. Res. Pract. 213, 1329-1339.   DOI
26 Cui, D. and Xu, X. (2018). DNA methyltransferases, DNA methylation, and age-associated cognitive function. Int. J. Mol. Sci. 19, 1315.   DOI
27 Dancy, B.M. and Cole, P.A. (2015). Protein lysine acetylation by p300/CBP. Chem. Rev. 115, 2419-2452.   DOI
28 Du, J., Johnson, L.M., Jacobsen, S.E., and Patel, D.J. (2015). DNA methylation pathways and their crosstalk with histone methylation. Nat. Rev. Mol. Cell Biol. 16, 519-532.   DOI
29 Slotkin, R.K. and Martienssen, R. (2007). Transposable elements and the epigenetic regulation of the genome. Nat. Rev. Genet. 8, 272-285.   DOI
30 Shi, Y. and Whetstine, J.R. (2007). Dynamic regulation of histone lysine methylation by demethylases. Mol. Cell 25, 1-14.   DOI
31 Suhy, D.A., Simon, K.D., Linzer, D.I.H., and Halloran, T.V.O. (1999). Metallothionein is part of a zinc-scavenging mechanism for cell survival under conditions of extreme zinc deprivation. J. Biol. Chem. 274, 9183-9192.   DOI
32 Ahn, H.J., Hwang, S.Y., Nguyen, N.H., Lee, I.J., Lee, E.J., Seong, J., and Lee, J.S. (2019). Radiation-induced CXCL12 upregulation via histone modification at the promoter in the tumor microenvironment of hepatocellular carcinoma. Mol. Cells 42, 530.   DOI
33 Ooi, S.K., Qiu, C., Bernstein, E., Li, K., Jia, D., Yang, Z., Erdjument-Bromage, H., Tempst, P., Lin, S., Allis, C., et al. (2007). DNMT3L connects unmethylated lysine 4 of histone H3 to de novo methylation of DNA. Nature 448, 714-717.   DOI
34 Eide, D.J. (2006). Zinc transporters and the cellular trafficking of zinc. Biochim. Biophys. Acta - Mol. Cell Res. 1763, 711-722.   DOI
35 Moore, L.D., Le, T., and Fan, G. (2013). DNA methylation and its basic function. Neuropsychopharmacology 38, 23-38.   DOI
36 Nakajima, K., Lee, M.G., Bin, B.H., Hara, T., Takagishi, T., Chae, S., Sano, S., and Fukada, T. (2020). Possible involvement of zinc transporter ZIP10 in atopic dermatitis. J. Dermatol. 47, e51-e53.
37 Perez, Y., Shorer, Z., Liani-Leibson, K., Chabosseau, P., Kadir, R., Volodarsky, M., Halperin, D., Barber-Zucker, S., Shalev, H., Schreiber, R., et al. (2017). SLC30A9 mutation affecting intracellular zinc homeostasis causes a novel cerebro-renal syndrome. Brain 140, 928-939.   DOI
38 Razin, S.V., Borunova, V.V., Maksimenko, O.G., and Kantidze, O.L. (2012). Cys2His2 zinc finger protein family: classification, functions, and major members. Biochemistry Mosc. 77, 217-226.   DOI
39 Rink, L. and Gabriel, P. (2000). Zinc and the immune system. Proc. Nutr. Soc. 59, 541-552.   DOI
40 Robertson, K.D. (2005). DNA methylation and human disease. Nat. Rev. Genet. 6, 597.   DOI
41 Roesijadi, G. (1996). Metallothionein and its role in toxic metal regulation. Comp. Biochem. Physiol. C Pharmacol. Toxicol. Endocrinol. 113, 117-123.   DOI
42 Avvakumov, N. and Cote, J. (2007). The MYST family of histone acetyltransferases and their intimate links to cancer. Oncogene 26, 5395-5407.   DOI
43 Algahtani, H. and Shirah, B. (2017). A novel mutation in the DNMT1 gene in a patient presenting with pure cerebellar ataxia. J. Genet. Med. 14, 71-74.   DOI
44 Andreini, C., Banci, L., Bertini, I., and Rosato, A. (2006). Counting the zincproteins encoded in the human genome. J. Proteome Res. 5, 196-201.   DOI
45 Berger, S.L., Kouzarides, T., Shiekhattar, R., and Shilatifard, A. (2009). An operational definition of epigenetics. Genes Dev. 23, 781-783.   DOI
46 Laird, P.W. and Jaenisch, R. (1996). The role of DNA methylation in cancer. Annu. Rev. Genet. 30, 441-464.   DOI
47 Miyai, T., Hojyo, S., Ikawa, T., Kawamura, M., Irié, T., Ogura, H., Hijikata, A., Bin, B.H., Yasuda, T., Kitamura, H., et al. (2014). Zinc transporter SLC39A10/ZIP10 facilitates antiapoptotic signaling during early B-cell development. Proc. Natl. Acad. Sci. U. S. A. 111, 11780-11785.   DOI
48 Kelly, E.J., Quaife, C.J., Froelick, G.J., and Palmiter, R.D. (1996). Metallothionein I and II protect against zinc deficiency and zinc toxicity in mice. J. Nutr. 126, 1782-1790.
49 Klimasauskas, S., Kumar, S., Roberts, R.J., and Cheng, X. (1994). Hhal methyltransferase flips its target base out of the DNA helix. Cell 76, 357-369.   DOI
50 Kuo, M.H. and Allis, C.D. (1998). Roles of histone acetyltransferases and deacetylases in gene regulation. BioEssays 20, 615-626.   DOI
51 Lee, M.G. and Bin, B.H. (2019). Different actions of intracellular zinc transporters ZIP7 and ZIP13 are essential for dermal development. Int. J. Mol. Sci. 20, 3941.   DOI
52 Lee, M.G., Choi, M.A., Chae, S., Kang, M.A., Jo, H., Baek, J., In, K.R., Park, H., Heo, H., Jang, D., et al. (2019). Loss of the dermis zinc transporter ZIP13 promotes the mildness of fibrosarcoma by inhibiting autophagy. Sci. Rep. 9, 1-11.   DOI
53 Li, H., Ilin, S., Wang, W., Duncan, E.M., Wysocka, J., Allis, C.D., and Patel, D.J. (2006). Molecular basis for site-specific read-out of histone H3K4me3 by the BPTF PHD finger of NURF. Nature 442, 91-95.   DOI
54 Fukada, T., Civic, N., Furuichi, T., Shimoda, S., Mishima, K., Higashiyama, H., Idaira, Y., Asada, Y., Kitamura, H., Yamasaki, H., et al. (2008). The zinc transporter SLC39A13/ZIP13 is required for connective tissue development; its involvement in BMP/TGF-${\beta}$ signaling pathways. PLoS One 3, e3642.   DOI
55 Fatemi, M., Hermann, A., Pradhan, S., and Jeltsch, A. (2001). The activity of the murine DNA methyltransferase Dnmt1 is controlled by interaction of the catalytic domain with the N-terminal part of the enzyme leading to an allosteric activation of the enzyme after binding to methylated DNA. J. Mol. Biol. 309, 1189-1199.   DOI
56 Lu, M. and Fu, D. (2007). Structure of the zinc transporter YiiP. Science 317, 1746-1748.   DOI
57 Lyko, F. (2017). The DNA methyltransferase family: a versatile toolkit for epigenetic regulation. Nat. Rev. Genet. 19, 81-92.   DOI
58 Macdonald, R.S. (2000). The role of zinc in growth and cell proliferation. J. Nutr. 130, 1500S-1508S.   DOI
59 Martínez-redondo, P. and Vaquero, A. (2013). The diversity of histone versus nonhistone sirtuin substrates. Genes Cancer 4, 148-163.   DOI
60 Frauer, C., Rottach, A., Meilinger, D., Bultmann, S., Fellinger, K., Hasenoder, S., Wang, M., Qin, W., Soding, J., Spada, F., et al. (2011). Different binding properties and function of CXXC zinc finger domains in Dnmt1 and Tet1. PLoS One 6, e16627.   DOI
61 Fukada, T., Yamasaki, S., Nishida, K., Murakami, M., and Hirano, T. (2011). Zinc homeostasis and signaling in health and diseases. J. Biol. Inorg. Chem. 16, 1123-1134.   DOI
62 Fukunaka, A., Fukada, T., Bhin, J., Suzuki, L., Tsuzuki, T., Takamine, Y., Bin, B.H., Yoshihara, T., Ichinoseki-Sekine, N., Naito, H., et al. (2017). Zinc transporter ZIP13 suppresses beige adipocyte biogenesis and energy expenditure by regulating C/EBP-${\beta}$ expression. PLoS Genet. 13, e1006950.   DOI
63 Goll, M.G., Kirpekar, F., Maggert, K.A., Yoder, J.A., Hsieh, C.L., Zhang, X., Golic, K.G., Jacobsen, S.E., and Bestor, T.H. (2006). Methylation of tRNAAsp by the DNA methyltransferase homolog Dnmt2. Science 311, 395-398.   DOI
64 Zhang, Q., Qi, S., Xu, M., Yu, L., Tao, Y., Deng, Z., Wu, W., Li, J., Chen, Z., and Wong, J. (2013). Structure-function analysis reveals a novel mechanism for regulation of histone demethylase LSD2/AOF1/KDM1b. Cell Res. 23, 225-241.   DOI
65 Ivanov, A.V., Peng, H., Yurchenko, V., Yap, K.L., Negorev, D.G., Schultz, D.C., Psulkowski, E., Fredericks, W.J., White, D.E., Maul, G.G., et al. (2007). PHD domain-mediated E3 ligase activity directs intramolecular sumoylation of an adjacent bromodomain required for gene silencing. Mol. Cell 28, 823-837.   DOI
66 Gowher, H. and Jeltsch, A. (2018). Mammalian DNA methyltransferases: new discoveries and open questions. Biochem. Soc. Trans. 46, 1191-1202.   DOI
67 Guerinot, M.L. (2000). The ZIP family of metal transporters. Biochim. Biophys. Acta - Biomembr. 1465, 190-198.   DOI
68 Hojyo, S., Miyai, T., Fujishiro, H., Kawamura, M., Yasuda, T., Hijikata, A., Bin, B.H., Irié, T., Tanaka, J., Atsumi, T., et al. (2014). Zinc transporter SLC39A10/ ZIP10 controls humoral immunity by modulating B-cell receptor signal strength. Proc. Natl. Acad. Sci. U. S. A. 111, 11786-11791.   DOI
69 Jeltsch, A. and Jurkowska, R.Z. (2016). Allosteric control of mammalian DNA methyltransferases - a new regulatory paradigm. Nucleic Acids Res. 44, 8556-8575.   DOI
70 Bin, B.H., Bhin, J., Kim, N.H., Lee, S., Jung, H., Kim, D., Hwang, D., Fukada, T., Lee, A., Lee, T.R., et al. (2016). An acrodermatitis enteropathica-associated Zn transporter, ZIP4, regulates human epidermal homeostasis. J. Investig. Dermatol. 137, 874-883.   DOI
71 Bin, B.H., Bhin, J., Takaishi, M., Toyoshima, K.E., Kawamata, S., Ito, K., Hara, T., Watanabe, T., Irié, T., Takagashi, T., et al. (2017). Requirement of zinc transporter ZIP10 for epidermal development: implication of the ZIP10-p63 axis in epithelial homeostasis. Proc. Natl. Acad. Sci. U. S. A. 114, 12243-12248.   DOI
72 Bin, B.H., Fukada, T., Hosaka, T., Yamasaki, S., Ohashi, W., Hojyo, S., Miyai, T., Nishida, K., Yokoyama, S., and Hirano, T. (2011). Biochemical characterization of human ZIP13 protein: a homo-dimerized zinc transporter involved in the spondylocheiro dysplastic Ehlers-Danlos syndrome. J. Biol. Chem. 286, 40255-40265.   DOI
73 Bin, B.H., Hojyo, S., Hosaka, T., Bhin, J., Kano, H., Miyai, T., Ikeda, M., Kimura‐ Someya, T., Shirouzu, M., Cho., E.G., et al. (2014). Molecular pathogenesis of spondylocheirodysplastic Ehlers‐Danlos syndrome caused by mutant ZIP13 proteins. EMBO Mol. Med. 6, 1028-1042.   DOI
74 Kambe, T., Tsuji, T., Hashimoto, A., and Itsumura, N. (2015). The physiological, biochemical, and molecular roles of zinc transporters in zinc homeostasis. Physiol. Rev. 95, 749-784.   DOI
75 Jeong, J. and Eide, D.J. (2013). The SLC39 family of zinc transporters. Mol. Aspects Med. 34, 612-619.   DOI
76 Jurkowska, R.Z., Jurkowski, T.P., and Jeltsch, A. (2011). Structure and function of mammalian DNA methyltransferases. ChemBioChem 12, 206-222.   DOI
77 Kambe, T., Nishito, Y., and Fukue, K. (2017). Zinc transporters in health and disease. In Molecular Genetic, and Nutritional Aspects of Major and Trace Minerals, J. Collins, ed. (Cambridge MA: Academic Press), pp. 283-291.