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Epigenetic events like DNA methylation and histone 
modification can alter heritable phenotypes. Zinc is required 
for the activity of various epigenetic enzymes, such as DNA 
methyltransferases (DNMTs), histone acetyltransferases 
(HATs), histone deacetylases (HDACs), and histone 
demethylases, which possess several zinc binding sites. Thus, 
the dysregulation of zinc homeostasis can lead to epigenetic 
alterations. Zinc homeostasis is regulated by Zinc Transporters 
(ZnTs), Zrt- and Irt-like proteins (ZIPs), and the zinc storage 
protein metallothionein (MT). Recent advances revealed that 
ZIPs modulate epigenetics. ZIP10 deficiency was found to 
result in reduced HATs, confirming its involvement in histone 
acetylation for rigid skin barrier formation. ZIP13 deficiency, 
which is associated with Spondylocheirodysplastic Ehlers–
Danlos syndrome (SCD-EDS), increases DNMT activity, leading 
to dysgenesis of dermis via improper gene expressions. 
However, the precise molecular mechanisms remain to 
be elucidated. Future molecular studies investigating the 
involvement of zinc and its transporters in epigenetics are 
warranted.
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INTRODUCTION

Zinc is an essential trace metal found in the tissues and flu-

ids of living organisms (Chasapis and Loutsidou, 2012). It is 

well known that zinc is a key component of many proteins. 

Several transcription factors need zinc to bind directly to spe-

cific regions of DNA (Coleman, 1992). For this, zinc finger 

domains (ZnDs) act as a binding site and facilitate transcrip-

tional activity (Razin et al., 2012). Additionally, over 300 en-

zymes require zinc for their function (Vallee and Auld, 1990). 

DNA polymerase needs zinc for DNA replication (Macdonald, 

2000). Taken together, it is predicted that about 10% of the 

genes in the human genome bind to zinc directly or indirectly 

(Andreini et al., 2006).

 Furthermore, zinc also plays a role in the immune system, 

influencing signaling molecules under immune-related ex-

tracellular stimulation (Bin et al., 2018a; Rink and Gabriel, 

2000). Zinc acts as a secondary messenger, with the ability to 

deliver signals to immune cells. In this process, a “zinc wave” 

is released from the perinuclear area, including the endo-

plasmic reticulum (Yamasaki et al., 2007). Zinc signals allow 

fundamental cell functions, such as proliferation, differentia-

tion, survival, and migration (Bin et al., 2016; Fukunaka et al., 

2017).

ZINC HOMEOSTASIS AND ZINC TRANSPORTERS

In mammalian cells, intracellular zinc homeostasis is tightly 

regulated by membrane transporting importers and export-

ers, namely zinc transporters (Eide, 2006). Zinc transporters 

are divided into two distinct families with contrasting func-

tions: the ZIP and ZnT families (Fig. 1).

 Firstly, the ZIP family, which is named after the first identi-

fied Zrt- and Irt-like proteins (ZIPs; zinc-regulated transporter 

and iron-regulated transporter-like proteins, encoded by 

SLC39A genes) (Jeong and Eide, 2013), is comprised of 14 
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ZIP transporters that mediate the influx of zinc into the cy-

toplasm, resulting in an increased level of intracellular zinc. 

The members of the ZIP family possess eight transmembrane 

domains (TM), which form a pore for passing zinc ion, with 

both the N- and C-termini facing the extracellular or luminal 

side (Fig. 1A) (Bin et al., 2011; Guerinot, 2000). In mammals, 

the members of the ZIP family evolved into LZT proteins; the 

LIV-1 subfamily of zinc transporters conserves a proline-ala-

nine-leucine (PAL) motif in each N-terminus, a cytoplasmic 

domain (CTD), and a histidine-rich domain (Bin et al., 2018a). 

Zinc binding occurs through the HNXXD motif in TM4 and 

HEXXH motif in TM5. The LZT proteins contain long extra-

cellular and intracellular domains that are reportedly involved 

in cellular signaling via phosphorylation and cleavage (Taylor 

and Nicholson, 2003). LZT proteins are associated with sever-

al human diseases, including breast and pancreatic cancers, 

rheumatism, and hemochromatosis, as well as innate im-

mune and tissue developments, suggesting that LZT proteins 

play important roles in human health (Taylor and Nicholson, 

2003; Walker and Black, 2004).

 Secondly, the ZnT family (encoded by SLC30A genes) 

act to reduce intracellular zinc by promoting its efflux from 

cells or intracellular vesicles (Fig. 1B) (Kambe et al., 2015). 

At least 10 members of the ZnT family have been identified 

in humans, of which ZnT9 is not thought to play a role as a 

zinc transporter (Perez et al., 2017). The members of the ZnT 

family possess six transmembrane domains (except for ZnT5, 

which possesses additional domains) and N- and C-termini 

facing the cytoplasm (Bin et al., 2018a; Fukada et al., 2011). 

The members of this family possess HXXXD motifs in TM2 

and TM5, through which zinc binds to the protein, as well as 

a histidine-rich domain between TM4 and TM5. Furthermore, 

the ZnT proteins contain a large CTD at the C-terminus that 

shares a high structural similarity with the copper chaperone 

(Bin et al., 2018a; Lu and Fu, 2007). The CTD is essential for 

dimeric formation and is predicted to be involved in zinc sens-

ing. Many mutations have been found in ZnTs; their clinical 

features are dysarthria and hypertonia in ZnT10 mutations, 

erosive dermatitis in ZnT2 mutations, and diabetes in ZnT8 

(Bin et al., 2018b; Kambe et al., 2017).

 Additionally, zinc homeostasis is also regulated by the intra-

cellular zinc storage protein, metallothionein (MT) (Roesijadi, 

1996; Ruttkay-Nedecky et al., 2013). MT is composed of 61-

68 amino acids with 20-21 cysteines and can bind to 7 zinc 

ions via multi-conserved cysteine residues. This zinc-binding 

protein is involved in responses to metal toxicity and oxidative 

stress, protecting cells from DNA damage. Hence, MT acts as 

a scavenger when zinc is present in high concentrations, as 

well as a zinc reservoir to supply zinc when it is deficient (Kelly 

et al., 1996; Suhy et al., 1999).

 Zinc homeostasis is essential for cellular events and its dys-

function can lead to several human disorders. In this review, 

we focus on recent advances concerning the relationship be-

tween zinc, zinc transporters, and epigenetics.

EPIGENETIC REGULATION

Epigenetics is involved in many cellular processes and caus-

es stable heritable phenotypes by changing chromosomes 

without altering the DNA sequence (Berger et al., 2009). This 

takes place via the occurrence of epigenetic marks, such as 

DNA methylation and histone modification, which regulate 

Fig. 1. The structures of zinc transporters. (A) Structural model of ZIP. The ZIP protein family is composed of 8 transmembrane domains 

(TM), with the N- and C-termini facing the extracellular/luminal space. A proline-alanine-leucine (PAL) motif is conserved in each 

N-terminus, while a cytoplasmic domain (CTD) and a histidine-rich domain is common to TM3 and TM4. Zinc binds to TM4 and TM5 

through the HNXXD motif in TM4 and the HEXXH motif in TM5. (B) Structural model of ZnT. The ZnT protein family is composed of 6 

TMs. A histidine-rich domain is common to present between TM4 and TM5, with a CTD in the C-terminus. TM2 and TM5 share the zinc 

binding site through their HXXXD motifs.
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gene expression and transposon activity (Du et al., 2015; 

Slotkin and Martienssen, 2007). Many enzymes involved in 

those epigenetic regulations require zinc (Fig. 2).

ZINC AND DNA METHYLATION ENZYMES

The DNA methylation pathway is an epigenetic mechanism 

that allows for the recruitment of proteins involved in gene 

repression or the inhibition of transcription factor binding to 

DNA (Moore et al., 2013). Given the important roles of DNA 

methylation in cellular processes, there is a strong correlation 

between aberrant DNA methylation and a wide number 

of human diseases (Robertson, 2005). This post-replicative 

modification involves the transfer of methyl groups (CH3) to 

DNA, specifically CpG dinucleotides, resulting in changes in 

molecular activity via the suppression of gene transcription, 

and thus its expression levels (Laird and Jaenisch, 1996; Rob-

ertson, 2005). In mammals, methylation takes place in the 

fifth carbon (5-C) position of the cytosine ring of DNA, result-

ing in the formation of 5-methylcytosine (5-mC) (Moore et 

Fig. 2. Epigenetic enzymes possessing zinc-binding sites. Asterisks denote the zinc-binding sites.
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al., 2013).

 One of the essential components of methylation is the 

DNA methyltransferase (DNA MTase) family (Lyko, 2017). 

The DNA MTase family is comprised of key enzymes (com-

monly abbreviated as DNMTs) whose role is to mediate the 

transfer of the methyl group to DNA. In this process, S-ade-

nosyl methionine (SAM) acts as the methyl donor to cytosine 

(Klimasauskas et al., 1994). DNMTs are mainly comprised of 

two parts: an N-terminus and a C-terminus (Jurkowska et 

al., 2011). At least 3 DNMTs are found in humans, name-

ly DNMT1, DNMT3a, and DNMT3b (Gowher and Jeltsch, 

2018). The N-terminus in DNMT1 is constituted of a prolif-

erating cell domain (PbD) and a replication-foci-targeting 

domain (RFTD), which serve to suppress de novo methyla-

tion (Zhang et al., 2015). Additionally, it contains a CXXC 

domain, which binds to unmethylated DNA and comprises 

the ZnD (Jeltsch and Jurkowska, 2016; Zhang et al., 2015). 

Furthermore, the C-terminal part contains repeated DNA-(cy-

tosine-5)-MTase motifs, as the catalytic domain (CatD); the 

interaction between ZnD and CatD is critical for the allosteric 

activation of DNMT1 (Algahtani and Shirah, 2017; Fatemi et 

al., 2001). DNMT2 shows a high similarity to other DNMTs, 

but mediates the methylation of aspartic acid transfer RNA 

and does not methylate DNA. For this reason, its name was 

subsequently revised to tRNA aspartic acid methyltransferase 

(TRDMT1) (Goll et al., 2006). DNMT1 is mainly required for 

establishing and maintaining DNA methylation, while DN-

MT3a, DNMT3b, and cofactor DNMT3L seem to mediate the 

patterns of de novo DNA methylation (Cui and Xu, 2018; 

Zeng and Chen, 2019). In addition, DNMT3-like protein 

(DNMT3L) is a regulatory factor that does not contain CatD. 

However, it also possesses Cys-rich areas that mediate its in-

teractions with the amino tail of histone 3 for de novo DNA 

methylation (Chédin et al., 2002; Ooi et al., 2007).

ZINC AND HISTONE MODIFICATION ENZYMES

Histone modifications are biological processes that modify 

chromatin structure either by acetylating or deacetylating the 

lysines found in the N-terminal tail of the histones bound to 

the DNA molecule (Ahn et al., 2019; Kuo and Allis, 1998; 

Verdone et al., 2006). During acetylation, the addition of ace-

tyl groups to lysine residues removes their positive charge and 

reduces the overall positive charge of the histone proteins, 

thereby decreasing the interactions between the N-termini of 

these proteins and DNA, which has a negative charge (Chrun 

et al., 2017). This process allows for the deconstruction of 

chromatin (euchromatin) due to the neutralization of his-

tones, facilitating transcription. Deacetylation represents the 

opposite process, whereby chromatin is condensed (heter-

ochromatin), resulting in the repression of gene transcription. 

These mechanisms are catalyzed by the enzymes histone 

acetyltransferase (HAT) and histone deacetylase (HDAC), oc-

curring as a natural part of gene regulation.

 HATs mediate the transfer of acetyl groups from ace-

tyl-CoA to N-lysine in both histone and non-histone proteins 

(Roth et al., 2001). Many HAT families have been identified, 

such as Gcn5-related N-acetyltransferases (GNATs), MYSTs, 

p300/CBP, nuclear receptor coactivators (SRCs), TFIIIC, and 

CLOCK, among others (Yuan and Marmorstein, 2013). The 

members of the MYST family have diverse range of archi-

tectures, some of which contain zinc within a ZnD or a plant 

homeodomain-linked zinc finger domain (PHD) (Avvaku-

mov and Côté, 2007). PHD is conserved in both monocytic 

leukemia zinc-finger protein (MOZ) and MOZ-related factor 

(MORF), also known as MYST4. These zinc binding motifs are 

known to promote substrate access and recognition. Further-

more, p300/CREB-binding protein (CBP) acetylates non-his-

tone substrates, including transcription factors, receptors, 

enzymes, and structural proteins, containing three cysteine/

histidine-rich domains that interact with other molecules and 

DNA (Dancy and Cole, 2015).

 As for HDACs, they are responsible for the deacetylation of 

both histones and non-histone proteins, removing the acetyl 

group from the N-acetyl lysine amino acid on target proteins 

(Wade et al., 1997). There are 4 classes of HDACs (I, II, III, and 

IV), which are highly conserved in eukaryotes, and all contain 

zinc in their catalytic domain (Seto and Yoshida, 2014). Class 

III HDACs, also known as sirtuins, do not share sequence 

or structural homologies with the other class members, al-

though they appear to be zinc-independent in some cases 

(Martínez-Redondo and Vaquero, 2013). Thus, whether class 

III HDACs require zinc for their proper function in vivo remains 

controversial. However, other HDACs require zinc ions to fa-

cilitate the nucleophilic attack of a water molecule in order to 

initiate the catalytic reaction (Bottomley et al., 2008; Schuetz 

et al., 2008; Vannini et al., 2004). Zinc ions within active sites 

coordinate aspartic acid and histidine, which are often found 

within the zinc binding sites of general zinc-binding proteins.

 Furthermore, histone methylation/demethylation is also 

crucial for epigenetic reprogramming and is involved in tu-

morigenesis (Ahn et al., 2019). In this process, demethylases 

mediate demethylation by removing the methyl groups in 

histones and other proteins. Two types of demethylases have 

been identified according to their mechanism, namely flavin 

adenine dinucleotide (FAD)-dependent amine oxidases (fla-

vin-dependent, lysine-specific protein demethylases [KDM] 

subfamily 1), and Fe(II) and α-ketoglutarate-dependent hy-

droxylases (KDM subfamily 2-6) (Shi and Whetstine, 2007).

 In the former, KDM1B (also known as a lysine-specific de-

methylase [LSD2]) contains a zinc finger at the N-terminus, 

which is comprised of three parts, namely C4H2C2, CW-

type zinc finger (Zf-CW), derived from the conserved Cys and 

Trp residues, and linker domains (Burg et al., 2015). Both 

C4H2C2 and Zf-CW are zinc fingers that coordinate sub-

strate specificity and catalytic activity by interacting with the 

demethylase substrate, similar to other regulators. Mutations 

in the transcriptional machinery of these motifs lead to loss 

of function and mislocalization (Zhang et al., 2013). More-

over, the histone lysine demethylase KDM2B (also known as 

JmjC domain-containing histone demethylase 1B [JHDM1B]), 

possesses a CXXC zinc-finger motif between the N-terminal 

Jumonji C (JmjC) domain and the C-terminal PHD/F-box (Yan 

et al., 2018). Additionally, the CXXC motif serves for DNA 

binding by recognizing CpG islands and mediates the forma-

tion of complexes comprised of polycomb repressors (Frauer 

et al., 2011). The PHD domain is also known to have a fin-

ger-like structure composed of cysteines and histidines, which 
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coordinates zinc ion binding (Rössler and Marschalek, 2013). 

The PHD domain works as an E3 ligase or a histone modifi-

cation reader (Ivanov et al., 2007; Li et al., 2006). These find-

ings indicate that zinc is an essential factor in various methyl-

ation enzymes, playing a critical role in their activity, substrate 

recognition, and structural changes.

ZINC TRANSPORTERS AND EPIGENETICS

Considering that zinc is a modulator, since it acts as a cofac-

tor for epigenetic enzymes and binds to active or allosteric 

sites, it is expected that zinc transporter proteins also play 

pivotal roles in epigenetic regulation. However, the relation-

ship between zinc transporters and epigenetics has not been 

well-studied. Recently, two zinc importing proteins, ZIP10 

and ZIP13, were reported to be involved in epigenetic regula-

tion (Fig. 3).

 ZIP10 was initially known to be involved in humoral im-

munity, in the regulation of B cell development, and signal 

strength by mediating the importation of zinc through the 

plasma membrane (Hojyo et al., 2014; Miyai et al., 2014). 

Recently, it has been reported that ZIP10 is expressed in the 

epidermis of skin at considerable levels (Bin et al., 2017; 

2018b). In this study, ZIP10 deficiency induced a reduction in 

the activities of HATs, resulting in the downregulation of tran-

scription of diverse genes, including FLG, KRT1, DSP, TGM1, 

and AQP3, which are essential for the epidermal stratifica-

tion, providing the foundation for the rigid skin barrier (Bin 

et al., 2019). Reduced HAT activity was recovered by zinc 

treatment, while the chelation of zinc ions reduced the levels 

of HAT activity. These findings indicate that ZIP10-mediated 

zinc supply is essential for epidermal organization via the reg-

ulation of HATs.

 In addition, ZIP10 deficiency has been observed in atopic 

dermatitis patients with severe epidermal barrier defects (Na-

kajima et al., 2020). Notably, ZIP10 deficiency did not affect 

Fig. 3. Zinc transporters in epigenetic regulations. The zinc-ZIP10-HAT axis is crucial for the gene expressions for skin integrity like FLG 

and MT1. The zinc-ZIP13-DNMT axis modulates the LC3 expression for autophagy.
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the activity of HDACs in keratinocytes. It is possible that there 

is a specific axis for zinc transporters to epigenetic enzymes, 

and epigenetic enzymes may have different sensitivity to 

zinc. In addition, cell type, species, and state may also affect 

the association between zinc transporters and epigenetic 

enzymes, wherein Hdac1-knockout (KO) mice revealed no 

skin phenotype. However, severe dysgenesis was observed in 

C57BL/6J-derived Hdac1-KO mice.

 ZIP13 is found in connective tissues and is localized in the 

Golgi apparatus (Bin et al., 2014; Fukada et al., 2008; Lee 

and Bin, 2019). It is a key partner of SMAD proteins located 

in connective tissue, forming cells by supplying them with 

zinc and promoting transcriptional activities for the produc-

tion of collagen. In previous studies, the nuclear translocation 

of SMAD proteins for transcription in ZIP13-deficient cells 

was prohibited. However, zinc treatment did not recover the 

nuclear translocation of SMAD proteins, implying that ZIP13 

may not directly regulate the nuclear translocation of SMAD 

proteins.

 Moreover, ZIP13 has been shown to function in modula-

tion of DNMTs (Lee et al., 2019). The increased DNMT activity 

is observed in ZIP13-deficient cells, which is recovered by zinc 

treatment. Zinc binding to the Cys-rich region of DNMTs may 

inhibit its activity. As expected, both cells from the cohort of 

Spondylocheirodysplastic Ehlers–Danlos syndrome (SCD-EDS) 

patient and the Zip13-KO mice having a significant decrease 

in cellular zinc levels, show a substantial increase of DNMT 

activity, indicating the disturbance of the DNMT activity by 

ZIP13 deficiency.

CONCLUSIONS

A diet containing an adequate amount of zinc is essential for 

human health since many epigenetic enzymes require zinc 

for their activities. For instance, HATs use zinc for DNA bind-

ing via their zinc finger motif and HDACs contain zinc in their 

active sites, which is needed for hydrolase reaction. More-

over, DNMTs are known to possess several zinc binding sites. 

Similarly, it is expected that several other epigenetic enzymes 

may also possess zinc binding sites, even though their precise 

structure and function remain unclear. Recent advances have 

demonstrated that zinc transporters are essential for cellular 

zinc homeostasis and for the modulation of the activity of 

epigenetic enzymes. Therefore, controlling zinc level and its 

transporters represents a potential therapeutic approach for 

epigenetic-associated diseases.
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