Browse > Article
http://dx.doi.org/10.5187/jast.2022.e40

Protective effects of biological feed additives on gut microbiota and the health of pigs exposed to deoxynivalenol: a review  

Neeraja, Recharla (Department of Food Science and Biotechnology, Sejong University)
Sungkwon, Park (Department of Food Science and Biotechnology, Sejong University)
Minji, Kim (Animal Nutrition and Physiology Division, National Institute of Animal Science)
Byeonghyeon, Kim (Animal Nutrition and Physiology Division, National Institute of Animal Science)
Jin Young, Jeong (Animal Nutrition and Physiology Division, National Institute of Animal Science)
Publication Information
Journal of Animal Science and Technology / v.64, no.4, 2022 , pp. 640-653 More about this Journal
Abstract
Deoxynivalenol (DON) is the most common mycotoxin contaminant of cereal-based food and animal feed. The toxicity of DON is very low compared to that of other toxins; however, the most prominent signs of DON exposure include inappetence and body weight loss, which causes considerable economic losses in the livestock industry. This review summarizes critical studies on biological DON mycotoxin mitigation strategies and the respective in vitro and in vivo intestinal effects. Focus areas include growth performance, gut health in terms of intestinal histomorphology, epithelial barrier functions, the intestinal immune system and microflora, and short-chain fatty acid production in the intestines. In addition, DON detoxification and modulation of these parameters, through biological supplements, are discussed. Biological detoxification of DON using microorganisms can attenuate DON toxicity by modulating gut microbiota and improving gut health with or without influencing the growth performance of pigs. However, the use of microorganisms as feed additives to livestock for mycotoxins detoxification needs more research before commercial use.
Keywords
Deoxynivalenol; Mycotoxins; Pigs; Gut health; Biological feed additives;
Citations & Related Records
Times Cited By KSCI : 13  (Citation Analysis)
연도 인용수 순위
1 Jia R, Sadiq FA, Liu W, Cao L, Shen Z. Protective effects of Bacillus subtilis ASAG 216 on growth performance, antioxidant capacity, gut microbiota and tissues residues of weaned piglets fed deoxynivalenol contaminated diets. Food Chem Toxicol. 2021;148:111962. https://doi.org/10.1016/j.fct.2020.111962   DOI
2 Li F, Wang J, Huang L, Chen H, Wang C. Effects of adding Clostridium sp. WJ06 on intestinal morphology and microbial diversity of growing pigs fed with natural deoxynivalenol contaminated wheat. Toxins. 2017;9:383. https://doi.org/10.3390/toxins9120383   DOI
3 Alassane-Kpembi I, Puel O, Pinton P, Cossalter AM, Chou TC, Oswald IP. Co-exposure to low doses of the food contaminants deoxynivalenol and nivalenol has a synergistic inflammatory effect on intestinal explants. Arch Toxicol. 2017;91:2677-87. https://doi.org/10.1007/s00204-016-1902-9   DOI
4 Wu W, He K, Zhou HR, Berthiller F, Adam G, Sugita-Konishi Y, et al. Effects of oral exposure to naturally-occurring and synthetic deoxynivalenol congeners on proinflammatory cytokine and chemokine mRNA expression in the mouse. Toxicol Appl Pharmacol. 2014;278:107-15. https://doi.org/10.1016/j.taap.2014.04.016   DOI
5 Zhang H, Deng X, Zhou C, Wu W, Zhang H. Deoxynivalenol induces inflammation in IPEC-J2 cells by activating P38 Mapk and Erk1/2. Toxins. 2020;12:180. https://doi.org/10.3390/toxins12030180   DOI
6 Kang R, Li R, Dai P, Li Z, Li Y, Li C. Deoxynivalenol induced apoptosis and inflammation of IPEC-J2 cells by promoting ROS production. Environ Pollut. 2019;251:689-98. https://doi.org/10.1016/j.envpol.2019.05.026   DOI
7 Nagashima H, Nakagawa H. Differences in the toxicities of trichothecene mycotoxins, deoxynivalenol and nivalenol, in cultured cells. Jpn Agric Res Q. 2014;48:393-7. https://doi.org/10.6090/jarq.48.393   DOI
8 Wang S, Yang J, Zhang B, Zhang L, Wu K, Yang A, et al. Potential link between gut microbiota and deoxynivalenol-induced feed refusal in weaned piglets. J Agric Food Chem. 2019;67:4976-86. https://doi.org/10.1021/acs.jafc.9b01037   DOI
9 Xu X, Yan G, Chang J, Wang P, Yin Q, Liu C, et al. Comparative transcriptome analysis reveals the protective mechanism of glycyrrhinic acid for deoxynivalenol-induced inflammation and apoptosis in IPEC-J2 cells. Oxid Med Cell Longev. 2020;2020:5974157. https://doi.org/10.1155/2020/5974157   DOI
10 Obremski K, Zielonka L, Gajecka M, Jakimiuk E, Bakula T, Baranowski M, et al. Histological estimation of the small intestine wall after administration of feed containing deoxynivalenol, T-2 toxin and zearalenone in the pig. Pol J Vet Sci. 2008;11:339-45.
11 Goyarts T, Danicke S. Bioavailability of the Fusarium toxin deoxynivalenol (DON) from naturally contaminated wheat for the pig. Toxicol Lett. 2006;163:171-82. https://doi.org/10.1016/j.toxlet.2005.10.007   DOI
12 Ayyash M, Olaimat A, Al-Nabulsi A, Liu SQ. Bioactive properties of novel probiotic Lactococcus lactis fermented camel sausages: cytotoxicity, angiotensin converting enzyme inhibition, antioxidant capacity, and antidiabetic activity. Food Sci Anim Resour. 2020;40:155-71. https://doi.org/10.5851/kosfa.2020.e1   DOI
13 Lee Y, Yoon Y, Choi K. Probiotics-mediated bioconversion and periodontitis. Food Sci Anim Resour. 2021;41:905-22. https://doi.org/10.5851/kosfa.2021.e57   DOI
14 Vogt SL, Finlay BB. Gut microbiota-mediated protection against diarrheal infections. J Travel Med. 2017;24:S39-43. https://doi.org/10.1093/jtm/taw086   DOI
15 Wache YJ, Valat C, Postollec G, Bougeard S, Burel C, Oswald IP, et al. Impact of deoxynivalenol on the intestinal microflora of pigs. Int J Mol Sci. 2009;10:1-17. https://doi.org/10.3390/ijms10010001   DOI
16 Wang S, Zhang C, Yang J, Wang X, Wu K, Zhang B, et al. Sodium butyrate protects the intestinal barrier by modulating intestinal host defense peptide expression and gut microbiota after a challenge with deoxynivalenol in weaned piglets. J Agric Food Chem. 2020;68:4515-27. https://doi.org/10.1021/acs.jafc.0c00791   DOI
17 Reddy KE, Jeong JY, Song J, Lee Y, Lee HJ, Kim DW, et al. Colon microbiome of pigs fed diet contaminated with commercial purified deoxynivalenol and zearalenone. Toxins. 2018;10:347. https://doi.org/10.3390/toxins10090347   DOI
18 Reddy KE, Kim M, Kim KH, Ji SY, Baek Y, Chun JL, et al. Effect of commercially purified deoxynivalenol and zearalenone mycotoxins on microbial diversity of pig cecum contents. Anim Biosci. 2021;34:243-55. https://doi.org/10.5713/ajas.20.0137   DOI
19 Li E, Horn N, Ajuwon KM. Mechanisms of deoxynivalenol-induced endocytosis and degradation of tight junction proteins in jejunal IPEC-J2 cells involve selective activation of the MAPK pathways. Arch Toxicol. 2021;95:2065-79. https://doi.org/10.1007/s00204-021-03044-w   DOI
20 Chlebicz A, Slizewska K. In vitro detoxification of aflatoxin B1, deoxynivalenol, fumonisins, T-2 toxin and zearalenone by probiotic bacteria from genus Lactobacillus and Saccharomyces cerevisiae yeast. Probiotics Antimicrob Proteins. 2020;12:289-301. https://doi.org/10.1007/s12602-018-9512-x   DOI
21 Parada Venegas D, De la Fuente MK, Landskron G, Gonzalez MJ, Quera R, Dijkstra G, et al. Short chain fatty acids (SCFAs)-mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases. Front Immunol. 2019;10:277. https://doi.org/10.3389/fimmu.2019.00277   DOI
22 Maresca M, Yahi N, Younes-Sakr L, Boyron M, Caporiccio B, Fantini J. Both direct and indirect effects account for the pro-inflammatory activity of enteropathogenic mycotoxins on the human intestinal epithelium: stimulation of interleukin-8 secretion, potentiation of interleukin-1β effect and increase in the transepithelial passage of commensal bacteria. Toxicol Appl Pharmacol. 2008;228:84-92. https://doi.org/10.1016/j.taap.2007.11.013   DOI
23 Yang X, Liang S, Guo F, Ren Z, Yang X, Long F. Gut microbiota mediates the protective role of Lactobacillus plantarum in ameliorating deoxynivalenol-induced apoptosis and intestinal inflammation of broiler chickens. Poult Sci. 2020;99:2395-406. https://doi.org/10.1016/j.psj.2019.10.034   DOI
24 Wang S, Hou Q, Guo Q, Zhang J, Sun Y, Wei H, et al. Isolation and characterization of a deoxynivalenol-degrading bacterium Bacillus licheniformis YB9 with the capability of modulating intestinal microbial flora of mice. Toxins. 2020;12:184. https://doi.org/10.3390/toxins12030184   DOI
25 Scheppach W. Effects of short chain fatty acids on gut morphology and function. Gut. 1994;35:S35-8. https://doi.org/10.1136/gut.35.1_Suppl.S35   DOI
26 Qiu Y, Yang J, Wang L, Yang X, Gao K, Zhu C, et al. Dietary resveratrol attenuation of intestinal inflammation and oxidative damage is linked to the alteration of gut microbiota and butyrate in piglets challenged with deoxynivalenol. J Anim Sci Biotechnol. 2021;12:71. https://doi.org/10.1186/s40104-021-00596-w   DOI
27 Smith MC, Madec S, Coton E, Hymery N. Natural co-occurrence of mycotoxins in foods and feeds and their in vitro combined toxicological effects. Toxins. 2016;8:94. https://doi.org/10.3390/toxins8040094   DOI
28 de Almeida AP, Lamardo LCA, Shundo L, da Silva SA, Navas SA, Alaburda J, et al. Occurrence of deoxynivalenol in wheat flour, instant noodle and biscuits commercialised in Brazil. Food Addit Contam Part B Surveill. 2016;9:251-5. https://doi.org/10.1080/19393210.2016.1195880   DOI
29 Zhao H, Wang Y, Zou Y, Zhao M. Natural occurrence of deoxynivalenol in soy sauces consumed in China. Food Control. 2013;29:71-5. https://doi.org/10.1016/j.foodcont.2012.05.066   DOI
30 Sobrova P, Adam V, Vasatkova A, Beklova M, Zeman L, Kizek R. Deoxynivalenol and its toxicity. Interdiscip Toxicol. 2010;3:94-9. https://doi.org/10.2478/v10102-010-0019-x   DOI
31 Guerre P. Mycotoxin and gut microbiota interactions. Toxins. 2020;12:769. https://doi.org/10.3390/toxins12120769   DOI
32 Pestka JJ. Deoxynivalenol: toxicity, mechanisms and animal health risks. Anim Feed Sci Technol. 2007;137:283-98. https://doi.org/10.1016/j.anifeedsci.2007.06.006   DOI
33 Diesing AK, Nossol C, Panther P, Walk N, Post A, Kluess J, et al. Mycotoxin deoxynivalenol (DON) mediates biphasic cellular response in intestinal porcine epithelial cell lines IPEC-1 and IPEC-J2. Toxicol Lett. 2011;200:8-18. https://doi.org/10.1016/j.toxlet.2010.10.006   DOI
34 Nossol C, Landgraf P, Kahlert S, Oster M, Isermann B, Dieterich DC, et al. Deoxynivalenol affects cell metabolism and increases protein biosynthesis in intestinal porcine epithelial cells (IPEC-J2): DON increases protein biosynthesis. Toxins. 2018;10:464. https://doi.org/10.3390/toxins10110464   DOI
35 Springler A, Hessenberger S, Schatzmayr G, Mayer E. Early activation of MAPK p44/42 is partially involved in DON-induced disruption of the intestinal barrier function and tight junction network. Toxins. 2016;8:264. https://doi.org/10.3390/toxins8090264   DOI
36 Pestka JJ. Deoxynivalenol-induced proinflammatory gene expression: mechanisms and pathological sequelae. Toxins. 2010;2:1300-17. https://doi.org/10.3390/toxins2061300   DOI
37 Pinton P, Oswald IP. Effect of deoxynivalenol and other Type B trichothecenes on the intestine: a review. Toxins. 2014;6:1615-43. https://doi.org/10.3390/toxins6051615   DOI
38 Oswald IP. Role of intestinal epithelial cells in the innate immune defence of the pig intestine. Vet Res. 2006;37:359-68. https://doi.org/10.1051/vetres:2006006   DOI
39 Jia R, Liu W, Zhao L, Cao L, Shen Z. Low doses of individual and combined deoxynivalenol and zearalenone in naturally moldy diets impair intestinal functions via inducing inflammation and disrupting epithelial barrier in the intestine of piglets. Toxicol Lett. 2020;333:159-69. https://doi.org/10.1016/j.toxlet.2020.07.032   DOI
40 Halasz A, Lasztity R, Abonyi T, Bata A. Decontamination of mycotoxin-containing food and feed by biodegradation. Food Rev Int. 2009;25:284-98. https://doi.org/10.1080/87559120903155750   DOI
41 Hathout AS, Aly SE. Biological detoxification of mycotoxins: a review. Ann Microbiol. 2014;64:905-19. https://doi.org/10.1007/s13213-014-0899-7   DOI
42 Zhu Y, Hassan YI, Watts C, Zhou T. Innovative technologies for the mitigation of mycotoxins in animal feed and ingredients: a review of recent patents. Anim Feed Sci Technol. 2016;216:19-29. https://doi.org/10.1016/j.anifeedsci.2016.03.030   DOI
43 Alassane-Kpembi I, Canlet C, Tremblay-Franco M, Jourdan F, Chalzaviel M, Pinton P, et al. 1H-NMR metabolomics response to a realistic diet contamination with the mycotoxin deoxynivalenol: effect of probiotics supplementation. Food Chem Toxicol. 2020;138:111222. https://doi.org/10.1016/j.fct.2020.111222   DOI
44 Bracarense APFL, Lucioli J, Grenier B, Drociunas Pacheco G, Moll WD, Schatzmayr G, et al. Chronic ingestion of deoxynivalenol and fumonisin, alone or in interaction, induces morphological and immunological changes in the intestine of piglets. Br J Nutr. 2012;107:1776-86. https://doi.org/10.1017/S0007114511004946   DOI
45 Kolf-Clauw M, Castellote J, Joly B, Bourges-Abella N, Raymond-Letron I, Pinton P, et al. Development of a pig jejunal explant culture for studying the gastrointestinal toxicity of the mycotoxin deoxynivalenol: histopathological analysis. Toxicol In Vitro. 2009;23:1580-4. https://doi.org/10.1016/j.tiv.2009.07.015   DOI
46 Wang X, Zhang Y, Zhao J, Cao L, Zhu L, Huang Y, et al. Deoxynivalenol induces inflammatory injury in IPEC-J2 cells via NF-κB signaling pathway. Toxins. 2019;11:733. https://doi.org/10.3390/toxins11120733   DOI
47 Maidana LG, Gerez J, Pinho F, Garcia S, Bracarense APFL. Lactobacillus plantarum culture supernatants improve intestinal tissue exposed to deoxynivalenol. Exp Toxicol Pathol. 2017;69:666-71. https://doi.org/10.1016/j.etp.2017.06.005   DOI
48 Xiao H, Tan BE, Wu MM, Yin YL, Li TJ, Yuan DX, et al. Effects of composite antimicrobial peptides in weanling piglets challenged with deoxynivalenol: II. Intestinal morphology and function. J Anim Sci. 2013;91:4750-6. https://doi.org/10.2527/jas.2013-6427   DOI
49 Schoultz I, Keita AV. The intestinal barrier and current techniques for the assessment of gut permeability. Cells. 2020;9:1909. https://doi.org/10.3390/cells9081909   DOI
50 Awad WA, Ghareeb K, Bohm J, Zentek J. Decontamination and detoxification strategies for the Fusarium mycotoxin deoxynivalenol in animal feed and the effectiveness of microbial biodegradation. Food Addit Contam Part A. 2010;27:510-20. https://doi.org/10.1080/19440040903571747   DOI
51 Holanda DM, Kim SW. Mycotoxin occurrence, toxicity, and detoxifying agents in pig production with an emphasis on deoxynivalenol. Toxins. 2021;13:171. https://doi.org/10.3390/toxins13020171   DOI
52 Shima J, Takase S, Takahashi Y, Iwai Y, Fujimoto H, Yamazaki M, et al. Novel detoxification of the trichothecene mycotoxin deoxynivalenol by a soil bacterium isolated by enrichment culture. Appl Environ Microbiol. 1997;63:3825-30. https://doi.org/10.1128/aem.63.10.3825-3830.1997   DOI
53 Yu H, Zhou T, Gong J, Young C, Su X, Li XZ, et al. Isolation of deoxynivalenol-transforming bacteria from the chicken intestines using the approach of PCR-DGGE guided microbial selection. BMC Microbiol. 2010;10:182. https://doi.org/10.1186/1471-2180-10-182   DOI
54 Wang G, Wang Y, Man H, Lee YW, Shi J, Xu J. Metabolomics-guided analysis reveals a twostep epimerization of deoxynivalenol catalyzed by the bacterial consortium IFSN-C1. Appl Microbiol Biotechnol. 2020;104:6045-56. https://doi.org/10.1007/s00253-020-10673-1   DOI
55 Schatzmayr G, Taubel M, Vekiru E, Moll D, Schatzmayr D, Binder EM, et al. Detoxification of mycotoxins by biotransformation. In: Barug D, Bhatnagar D, van Egmond HP, van der Kamp JW, van Osenbruggen WA, Visconti A, editors. The mycotoxin factbook, food feed top. Wageningen Academic: Wageningen; 2006. p. 363-75.
56 Gresse R, Chaucheyras-Durand F, Fleury MA, Van de Wiele T, Forano E, Blanquet-Diot S. Gut microbiota dysbiosis in postweaning piglets: understanding the keys to health. Trends Microbiol. 2017;25:851-73. https://doi.org/10.1016/j.tim.2017.05.004   DOI
57 Pomothy JM, Paszti-Gere E, Barna RF, Prokoly D, Jerzsele A. The impact of fermented wheat germ extract on porcine epithelial cell line exposed to deoxynivalenol and T-2 mycotoxins. Oxid Med Cell Longev. 2020;2020:3854247. https://doi.org/10.1155/2020/3854247   DOI
58 Goossens J, Pasmans F, Verbrugghe E, Vandenbroucke V, De Baere S, Meyer E, et al. Porcine intestinal epithelial barrier disruption by the Fusarium mycotoxins deoxynivalenol and T-2 toxin promotes transepithelial passage of doxycycline and paromomycin. BMC Vet Res. 2012;8:245. https://doi.org/10.1186/1746-6148-8-245   DOI
59 Diesing AK, Nossol C, Ponsuksili S, Wimmers K, Kluess J, Walk N, et al. Gene regulation of intestinal porcine epithelial cells IPEC-J2 is dependent on the site of deoxynivalenol toxicological action. PLOS ONE. 2012;7:e34136. https://doi.org/10.1371/journal.pone.0034136   DOI
60 Pinton P, Nougayrede JP, Del Rio JC, Moreno C, Marin DE, Ferrier L, et al. The food contaminant deoxynivalenol, decreases intestinal barrier permeability and reduces claudin expression. Toxicol Appl Pharmacol. 2009;237:41-8. https://doi.org/10.1016/j.taap.2009.03.003   DOI
61 Chelakkot C, Ghim J, Ryu SH. Mechanisms regulating intestinal barrier integrity and its pathological implications. Exp Mol Med. 2018;50:1-9. https://doi.org/10.1038/s12276-018-0126-x   DOI
62 Suzuki T. Regulation of the intestinal barrier by nutrients: the role of tight junctions. Anim Sci J. 2020;91:e13357. https://doi.org/10.1111/asj.13357   DOI
63 Pinton P, Tsybulskyy D, Lucioli J, Laffitte J, Callu P, Lyazhri F, et al. Toxicity of deoxynivalenol and its acetylated derivatives on the intestine: differential effects on morphology, barrier function, tight junction proteins, and mitogen-activated protein kinases. Toxicol Sci. 2012;130:180-90. https://doi.org/10.1093/toxsci/kfs239   DOI
64 Wang S, Yang J, Zhang B, Wu K, Yang A, Li C, et al. Deoxynivalenol impairs porcine intestinal host defense peptide expression in weaned piglets and IPEC-J2 cells. Toxins. 2018;10:541. https://doi.org/10.3390/toxins10120541   DOI
65 Accensi F, Pinton P, Callu P, Abella-Bourges N, Guelfi JF, Grosjean F, et al. Ingestion of low doses of deoxynivalenol does not affect hematological, biochemical, or immune responses of piglets. J Anim Sci. 2006;84:1935-42. https://doi.org/10.2527/jas.2005-355   DOI
66 Alizadeh A, Braber S, Akbari P, Garssen J, Fink-Gremmels J. Deoxynivalenol impairs weight gain and affects markers of gut health after low-dose, short-term exposure of growing pigs. Toxins. 2015;7:2071-95. https://doi.org/10.3390/toxins7062071   DOI
67 Holanda DM, Kim SW. Efficacy of mycotoxin detoxifiers on health and growth of newlyweaned pigs under chronic dietary challenge of deoxynivalenol. Toxins. 2020;12:311. https://doi.org/10.3390/toxins12050311   DOI
68 Wellington MO, Bosompem MA, Petracek R, Nagl V, Columbus DA. Effect of long-term feeding of graded levels of deoxynivalenol (DON) on growth performance, nutrient utilization, and organ health in finishing pigs and DON content in biological samples. J Anim Sci. 2020;98:skaa378. https://doi.org/10.1093/jas/skaa378   DOI
69 Wu L, Liao P, He L, Ren W, Yin J, Duan J, et al. Growth performance, serum biochemical profile, jejunal morphology, and the expression of nutrients transporter genes in deoxynivalenol (DON)- challenged growing pigs. BMC Vet Res. 2015;11:144. https://doi.org/10.1186/s12917-015-0449-y   DOI
70 Reddy KE, Song J, Lee HJ, Kim M, Kim DW, Jung HJ, et al. Effects of high levels of deoxynivalenol and zearalenone on growth performance, and hematological and immunological parameters in pigs. Toxins. 2018;10:114. https://doi.org/10.3390/toxins10030114   DOI
71 Kariyawasam KMGMM, Yang SJ, Lee NK, Paik HD. Probiotic properties of Lactobacillus brevis KU200019 and synergistic activity with fructooligosaccharides in antagonistic activity against foodborne pathogens. Food Sci Anim Resour. 2020;40:297-310. https://doi.org/10.5851/kosfa.2020.e15   DOI
72 Gu MJ, Song SK, Park SM, Lee IK, Yun CH. Bacillus subtilis protects porcine intestinal barrier from deoxynivalenol via improved zonula occludens-1 expression. Asian-Australas J Anim Sci. 2014;27:580-6. https://doi.org/10.5713/ajas.2013.13744   DOI
73 Lessard M, Savard C, Deschene K, Lauzon K, Pinilla VA, Gagnon CA, et al. Impact of deoxynivalenol (DON) contaminated feed on intestinal integrity and immune response in swine. Food Chem Toxicol. 2015;80:7-16. https://doi.org/10.1016/j.fct.2015.02.013   DOI
74 Gao X, Mu P, Wen J, Sun Y, Chen Q, Deng Y. Detoxification of trichothecene mycotoxins by a novel bacterium, Eggerthella sp. DII-9. Food Chem Toxicol. 2018;112:310-9. https://doi.org/10.1016/j.fct.2017.12.066   DOI
75 Alassane-Kpembi I, Pinton P, Hupe JF, Neves M, Lippi Y, Combes S, et al. Saccharomyces cerevisiae boulardii reduces the deoxynivalenol-induced alteration of the intestinal transcriptome. Toxins. 2018;10:199. https://doi.org/10.3390/toxins10050199   DOI
76 Weaver AC, See MT, Hansen JA, Kim YB, De Souza ALP, Middleton TF, et al. The use of feed additives to reduce the effects of aflatoxin and deoxynivalenol on pig growth, organ health and immune status during chronic exposure. Toxins. 2013;5:1261-81. https://doi.org/10.3390/toxins5071261   DOI
77 Liao Y, Peng Z, Chen L, Nussler AK, Liu L, Yang W. Deoxynivalenol, gut microbiota and immunotoxicity: a potential approach? Food Chem Toxicol. 2018;112:342-54. https://doi.org/10.1016/j.fct.2018.01.013   DOI
78 Li X, Guo Y, Zhao L, Fan Y, Ji C, Zhang J, et al. Protective effects of Devosia sp. ANSB714 on growth performance, immunity function, antioxidant capacity and tissue residues in growingfinishing pigs fed with deoxynivalenol contaminated diets. Food Chem Toxicol. 2018;121:246-51. https://doi.org/10.1016/j.fct.2018.09.007   DOI
79 Young LG, McGirr L, Valli VE, Lumsden JH, Lun A. Vomitoxin in corn fed to young pigs. J Anim Sci. 1983;57:655-64. https://doi.org/10.2527/jas1983.573655x   DOI
80 Dersjant-Li Y, Verstegen MWA, Gerrits WJJ. The impact of low concentrations of aflatoxin, deoxynivalenol or fumonisin in diets on growing pigs and poultry. Nutr Res Rev. 2003;16:223-39. https://doi.org/10.1079/NRR200368   DOI
81 Sayyari A, Faeste CK, Hansen U, Uhlig S, Framstad T, Schatzmayr D, et al. Effects and biotransformation of the mycotoxin deoxynivalenol in growing pigs fed with naturally contaminated pelleted grains with and without the addition of Coriobacteriaceum DSM 11798. Food Addit Contam Part A. 2018;35:1394-409. https://doi.org/10.1080/19440049.2018.1461254   DOI
82 Liu M, Zhang L, Chu XH, Ma R, Wang YW, Liu Q, et al. Effects of deoxynivalenol on the porcine growth performance and intestinal microbiota and potential remediation by a modified HSCAS binder. Food Chem Toxicol. 2020;141:111373. https://doi.org/10.1016/j.fct.2020.111373   DOI
83 Weaver AC, See MT, Kim SW. Protective effect of two yeast based feed additives on pigs chronically exposed to deoxynivalenol and zearalenone. Toxins. 2014;6:3336-53. https://doi.org/10.3390/toxins6123336   DOI
84 Franco TS, Garcia S, Hirooka EY, Ono YS, dos Santos JS. Lactic acid bacteria in the inhibition of Fusarium graminearum and deoxynivalenol detoxification. J Appl Microbiol. 2011;111:739-48. https://doi.org/10.1111/j.1365-2672.2011.05074.x   DOI