• 제목/요약/키워드: Bilinear forms

검색결과 24건 처리시간 0.019초

Extremal Problems for 𝓛s(22h(w))

  • Kim, Sung Guen
    • Kyungpook Mathematical Journal
    • /
    • 제57권2호
    • /
    • pp.223-232
    • /
    • 2017
  • We classify the extreme and exposed symmetric bilinear forms of the unit ball of the space of symmetric bilinear forms on ${\mathbb{R}}^2$ with hexagonal norms. We also show that every extreme symmetric bilinear forms of the unit ball of the space of symmetric bilinear forms on ${\mathbb{R}}^2$ with hexagonal norms is exposed.

THE UNIT BALL OF THE SPACE OF BILINEAR FORMS ON ℝ3 WITH THE SUPREMUM NORM

  • Kim, Sung Guen
    • 대한수학회논문집
    • /
    • 제34권2호
    • /
    • pp.487-494
    • /
    • 2019
  • We classify all the extreme and exposed bilinear forms of the unit ball of ${\mathcal{L}}(^2l^3_{\infty})$ which leads to a complete formula of ${\parallel}f{\parallel}$ for every $f{\in}{\mathcal{L}}(^2l^3_{\infty})^*$. It follows from this formula that every extreme bilinear form of the unit ball of ${\mathcal{L}}(^2l^3_{\infty})$ is exposed.

GEOMETRY OF BILINEAR FORMS ON A NORMED SPACE ℝn

  • Sung Guen Kim
    • 대한수학회지
    • /
    • 제60권1호
    • /
    • pp.213-225
    • /
    • 2023
  • For every n ≥ 2, let ℝn‖·‖ be Rn with a norm ‖·‖ such that its unit ball has finitely many extreme points more than 2n. We devote to the description of the sets of extreme and exposed points of the closed unit balls of 𝓛(2n‖·‖) and 𝓛𝒮(2n‖·‖), where 𝓛(2n‖·‖) is the space of bilinear forms on ℝn‖·‖, and 𝓛𝒮(2n‖·‖) is the subspace of 𝓛(2n‖·‖) consisting of symmetric bilinear forms. Let 𝓕 = 𝓛(2n‖·‖) or 𝓛𝒮(2n‖·‖). First we classify the extreme and exposed points of the closed unit ball of 𝓕. We also show that every extreme point of the closed unit ball of 𝓕 is exposed. It is shown that ext B𝓛𝒮(2n‖·‖) = ext B𝓛(2n‖·‖) ∩ 𝓛𝒮(2n‖·‖) and exp B𝓛𝒮(2n‖·‖) = exp B𝓛(2n‖·‖) ∩ 𝓛𝒮(2n‖·‖), which expand some results of [18, 23, 28, 29, 35, 38, 40, 41, 43].

The Geometry of the Space of Symmetric Bilinear Forms on ℝ2 with Octagonal Norm

  • Kim, Sung Guen
    • Kyungpook Mathematical Journal
    • /
    • 제56권3호
    • /
    • pp.781-791
    • /
    • 2016
  • Let $d_*(1,w)^2 ={\mathbb{R}}^2$ with the octagonal norm of weight w. It is the two dimensional real predual of Lorentz sequence space. In this paper we classify the smooth points of the unit ball of the space of symmetric bilinear forms on $d_*(1,w)^2$. We also show that the unit sphere of the space of symmetric bilinear forms on $d_*(1,w)^2$ is the disjoint union of the sets of smooth points, extreme points and the set A as follows: $$S_{{\mathcal{L}}_s(^2d_*(1,w)^2)}=smB_{{\mathcal{L}}_s(^2d_*(1,w)^2)}{\bigcup}extB_{{\mathcal{L}}_s(^2d_*(1,w)^2)}{\bigcup}A$$, where the set A consists of $ax_1x_2+by_1y_2+c(x_1y_2+x_2y_1)$ with (a = b = 0, $c={\pm}{\frac{1}{1+w^2}}$), ($a{\neq}b$, $ab{\geq}0$, c = 0), (a = b, 0 < ac, 0 < ${\mid}c{\mid}$ < ${\mid}a{\mid}$), ($a{\neq}{\mid}c{\mid}$, a = -b, 0 < ac, 0 < ${\mid}c{\mid}$), ($a={\frac{1-w}{1+w}}$, b = 0, $c={\frac{1}{1+w}}$), ($a={\frac{1+w+w(w^2-3)c}{1+w^2}}$, $b={\frac{w-1+(1-3w^2)c}{w(1+w^2)}}$, ${\frac{1}{2+2w}}$ < c < ${\frac{1}{(1+w)^2(1-w)}}$, $c{\neq}{\frac{1}{1+2w-w^2}}$), ($a={\frac{1+w(1+w)c}{1+w}}$, $b={\frac{-1+(1+w)c}{w(1+w)}}$, 0 < c < $\frac{1}{2+2w}$) or ($a={\frac{1=w(1+w)c}{1+w}}$, $b={\frac{1-(1+w)c}{1+w}}$, $\frac{1}{1+w}$ < c < $\frac{1}{(1+w)^2(1-w)}$).