Acknowledgement
Supported by : National Research Foundation of Korea(NRF)
References
- R. M. Aron, Y. S. Choi, S. G. Kim and M. Maestre, Local properties of polynomials on a Banach space, Illinois J. Math., 45(1)(2001), 25-39.
-
Y. S. Choi, H. Ki and S. G. Kim, Extreme polynomials and multilinear forms on
$l_1$ , J. Math. Anal. Appl., 228(2)(1998), 467-482. https://doi.org/10.1006/jmaa.1998.6161 -
Y. S. Choi and S. G. Kim, The unit ball of P(
$^{2}l^{2}_{2}$ ), Arch. Math. (Basel), 71(6)(1998), 472-480. https://doi.org/10.1007/s000130050292 -
Y. S. Choi and S. G. Kim, Extreme polynomials on
$c_0$ , Indian J. Pure Appl. Math., 29(10)(1998), 983-989. -
Y. S. Choi and S. G. Kim, Smooth points of the unit ball of the space P(
$^2l_1$ ), Results Math., 36(1-2)(1999), 26-33. https://doi.org/10.1007/BF03322099 -
Y. S. Choi and S. G. Kim, Exposed points of the unit balls of the spaces P(
$^{2}l^{2}_{p}$ ) (p =1, 2,${\infty}$ ), Indian J. Pure Appl. Math., 35(1)(2004), 37-41. - S. Dineen, Complex Analysis on Infinite Dimensional Spaces, Springer-Verlag, London (1999).
- S. Dineen, Extreme integral polynomials on a complex Banach space, Math. Scand., 92(1)(2003), 129-140. https://doi.org/10.7146/math.scand.a-14397
-
B. C. Grecu, Geometry of 2-homogeneous polynomials on
$l_p$ spaces, 1 < p <${\infty}$ , J. Math. Anal. Appl., 273(2)(2002), 262-282 . https://doi.org/10.1016/S0022-247X(02)00217-2 - B. C. Grecu, G. A. Munoz-Fernandez and J.B. Seoane-Sepulveda, Unconditional con-stants and polynomial inequalities, J. Approx. Theory, 161(2)(2009), 706-722. https://doi.org/10.1016/j.jat.2008.12.001
-
S. G. Kim, Exposed 2-homogeneous polynomials on P(
$^{2}l^{2}_{p}$ ) (1${\leq}$ p${\leq}$ ${\infty}$ ), Math. Proc. Royal Irish Acad., 107(2)(2007), 123-129. https://doi.org/10.3318/PRIA.2007.107.2.123 -
S. G. Kim, The unit ball of
$L_s$ ($^{2}l^{2}_{\infty}$ ), Extracta Math., 24(1)(2009), 17-29. -
S. G. Kim, The unit ball of P(
$^2d_{\ast}(1,w)^2$ ), Math. Proc. Royal Irish Acad., 111(2011), 77-92. https://doi.org/10.3318/PRIA.2011.111.1.9 -
S. G. Kim, The unit ball of
$L_s$ ($^2d_{\ast}(1,w)^2$ ), Kyungpook Math. J., 53(2)(2013), 295-306. https://doi.org/10.5666/KMJ.2013.53.2.295 -
S. G. Kim, Smooth polynomials of P(
$^2d_{\ast}(1,w)^2$ ), Math. Proc. Royal Irish Acad., 113(1)(2013), 45-58. https://doi.org/10.3318/PRIA.2013.113.05 -
S. G. Kim, Extreme bilinear forms of L(
$^2d_{\ast}(1,w)^2$ ), Kyungpook Math. J., 53(4)(2013), 625-638. https://doi.org/10.5666/KMJ.2013.53.4.625 - S. G. Kim and S. H. Lee, Exposed 2-homogeneous polynomials on Hilbert spaces, Proc. Amer. Math. Soc., 131(2)(2003), 449-453. https://doi.org/10.1090/S0002-9939-02-06544-9
- J. Lee and K. S. Rim, Properties of symmetric matrices, J. Math. Anal. Appl., 305(1)(2005), 219-226. https://doi.org/10.1016/j.jmaa.2004.11.011
- G. A. Munoz-Fernandez, S. Revesz and J. B. Seoane-Sepulveda, Geometry of homo-geneous polynomials on non symmetric convex bodies, Math. Scand., 105(1)(2009), 147-160. https://doi.org/10.7146/math.scand.a-15111
- G. A. Munoz-Fernandez and J. B. Seoane-Sepulveda, Geometry of Banach spaces of trinomials, J. Math. Anal. Appl., 340(2)(2008), 1069-1087. https://doi.org/10.1016/j.jmaa.2007.09.010
- R. A. Ryan and B. Turett, Geometry of spaces of polynomials, J. Math. Anal. Appl., 221(2)(1998), 698-711. https://doi.org/10.1006/jmaa.1998.5942
Cited by
- Exposed Bilinear Forms of π(2d*(1, w)2) vol.55, pp.1, 2015, https://doi.org/10.5666/KMJ.2015.55.1.119
- Exposed 2-Homogeneous Polynomials on the two-Dimensional Real Predual of Lorentz Sequence Space vol.13, pp.5, 2016, https://doi.org/10.1007/s00009-015-0658-4
- The Geometry of the Space of Symmetric Bilinear Forms on β2with Octagonal Norm vol.56, pp.3, 2016, https://doi.org/10.5666/KMJ.2016.56.3.781
- Extreme bilinear forms on $$\mathbb {R}^n$$Rn with the supremum norm vol.77, pp.2, 2018, https://doi.org/10.1007/s10998-018-0246-z