THE UNIT BALL OF $\mathcal{L}\left({ }^{\mathbf{2}} \mathbb{R}_{h(w)}^{2}\right)$

Sung Guen Kim

Abstract

We classify the extreme bilinear forms of the unit ball of the

 space of bilinear forms on \mathbb{R}^{2} with hexagonal norms.
1. Introduction

We write B_{E} for the closed unit ball of a real Banach space $E . x \in B_{E}$ is called an extreme point of B_{E} if $y, z \in B_{E}$ with $x=\frac{1}{2}(y+z)$ implies $x=y=z$. We denote by $\operatorname{ext} B_{E}$ the set of extreme points of $B_{E} . x \in B_{E}$ is called an exposed point of B_{E} if there is an $f \in E^{*}$ so that $f(x)=1=\|f\|$ and $f(y)<1$ for every $y \in B_{E} \backslash\{x\}$. It is easy to see that every exposed point of B_{E} is an extreme point. $x \in B_{E}$ is called a smooth point of B_{E} if there is a unique $f \in E^{*}$ so that $f(x)=1=\|f\|$. A mapping $P: E \rightarrow \mathbb{R}$ is a continuous 2-homogeneous polynomial if there exists a continuous bilinear form L on the product $E \times E$ such that $P(x)=L(x, x)$ for every $x \in E$. We denote by $\mathcal{L}\left({ }^{2} E\right)$ the Banach space of all continuous bilinear forms on E endowed with the norm $\|L\|=\sup _{\|x\|=\|y\|=1}|L(x, y)| \cdot \mathcal{L}_{s}\left({ }^{2} E\right)$ denotes the closed subspace of $\mathcal{L}\left({ }^{2} E\right)$ consisting of all continuous symmetric bilinear forms on $E . \mathcal{P}\left({ }^{2} E\right)$ denotes the Banach space of all continuous 2-homogeneous polynomials from E into \mathbb{R} endowed with the norm $\|P\|=\sup _{\|x\|=1}|P(x)|$. For more details about the theory of multilinear mappings and polynomials on a Banach space, we refer to [7].

In 1998, Choi et al. $[2,3]$ characterized the extreme points of the unit ball of $\mathcal{P}\left({ }^{2} l_{1}^{2}\right)$ and $\mathcal{P}\left({ }^{2} l_{2}^{2}\right)$. In 2007, Kim [11] classified the exposed 2-homogeneous polynomials on $\mathcal{P}\left({ }^{2} l_{p}^{2}\right)(1 \leq p \leq \infty)$, where $l_{p}^{2}=\mathbb{R}^{2}$ with the l_{p}-norm. Recently, $\operatorname{Kim}[13,15,19]$ classify the extreme, exposed, smooth points of the unit ball of $\mathcal{P}\left(d_{*}(1, w)^{2}\right)$, where $d_{*}(1, w)^{2}=\mathbb{R}^{2}$ with the octagonal norm $\|(x, y)\|_{d_{*}}=\max \left\{|x|,|y|, \frac{|x|+|y|}{1+w}\right\}$. In 2009, Kim [12] classified the extreme, exposed, smooth points of the unit ball of $\mathcal{L}_{s}\left({ }^{2} l_{\infty}^{2}\right)$. Recently, $\operatorname{Kim}[14,16-18,21]$

[^0]classified the extreme, exposed, smooth points of the unit balls of $\mathcal{L}_{s}\left({ }^{2} d_{*}(1, w)^{2}\right)$ and $\mathcal{L}\left({ }^{2} d_{*}(1, w)^{2}\right)$.

We refer to ([1-6], [8-26] and references therein) for some recent work about extremal properties of multilinear mappings and homogeneous polynomials on some classical Banach spaces. For $0<w<1, \mathbb{R}_{h(w)}^{2}$ denotes \mathbb{R}^{2} endowed with a hexagonal norm $\|(x, y)\|_{h(w)}:=\max \{|y|,|x|+(1-w)|y|\}$. In this paper, we classify the extreme bilinear forms of the unit ball of $\mathcal{L}\left({ }^{2} \mathbb{R}_{h(w)}^{2}\right)$.

2. Main results

Let $0<w<1$ and $T\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)=a x_{1} x_{2}+b y_{1} y_{2}+c x_{1} y_{2}+d x_{2} y_{1} \in$ $\mathcal{L}\left({ }^{2} \mathbb{R}_{h(w)}^{2}\right)$ for some reals a, b, c, d. For simplicity we will write

$$
T\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)=(a, b, c, d)
$$

Let

$$
\begin{aligned}
& T_{1}\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right):=T\left(\left(x_{2}, y_{2}\right),\left(x_{1}, y_{1}\right)\right)=(a, b, d, c), \\
& T_{2}\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right):=T\left(\left(x_{1},-y_{1}\right),\left(x_{2}, y_{2}\right)\right)=(a,-b, c,-d), \\
& T_{3}\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right):=T\left(\left(x_{1}, y_{1}\right),\left(x_{2},-y_{2}\right)\right)=(a,-b,-c, d), \\
& T_{4}\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right):=T\left(\left(x_{1}, y_{1}\right),\left(-x_{2},-y_{2}\right)\right)=(-a,-b,-c,-d) .
\end{aligned}
$$

Then $\left\|T_{i}\right\|=\|T\|(i=1, \ldots, 4)$. Hence, without loss of generality, we may assume that $a \geq 0$ and $c \geq d \geq 0$.

Theorem 2.1. Let $0<w<1$ and $T\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right):=(a, b, c, d) \in \mathcal{L}\left({ }^{2} \mathbb{R}_{h(w)}^{2}\right)$ with $a \geq 0$ and $c \geq d \geq 0$. Then

$$
\|T\|=\max \left\{a, a w+c,\left|a w^{2}+b\right|+(c+d) w,\left|a w^{2}-b\right|+(c-d) w\right\}
$$

Proof. Note that $\operatorname{ext} B_{\mathbb{R}_{h(w)}^{2}}=\{(\pm 1,0),(w, \pm 1),(-w, \pm 1)\}$. By the KreinMilman theorem, $B_{\mathbb{R}_{h(w)}^{2}}=\overline{c o}\left(\operatorname{ext} B_{\mathbb{R}_{h(w)}^{2}}\right)$, where $\overline{c o}(A)$ is the closed convex hull of the set A. By the bilinearity of T, it follows that

$$
\begin{aligned}
\|T\|= & \max \{|T((\pm 1,0),(\pm 1,0))|,|T((\pm 1,0),(w, \pm 1))|, \\
= & |T((w, \pm 1),(\pm 1,0))|,|T((w, \pm 1),(w, \pm 1))|\} \\
= & \max \{|T((1,0),(1,0))|,|T((1,0),(w, 1))|,|T((w, 1),(1,0))|, \\
& |T((1,0),(w,-1))|,|T((w,-1),(1,0))|,|T((w, 1),(w, 1))|, \\
= & \max \{\mid(w,-1),(w,-1))|,|T((w, 1),(w,-1))|,|T((w,-1),(w, 1))|\} \\
= & \max \left\{a, a w+c,\left|a w^{2}+b\right|+(c+d) w,\left|a w^{2}-b\right|+(c-d) w\right\} .
\end{aligned}
$$

Note that if $\|T\|=1$, then $|a| \leq 1,|b| \leq 1,|c| \leq 1$ and $|d| \leq 1$.

Theorem 2.2. Let $0<w<1$ and $T\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)=a x_{1} x_{2}+b y_{1} y_{2}+$ $c x_{1} y_{2}+d x_{2} y_{1} \in \mathcal{L}\left({ }^{2} \mathbb{R}_{h(w)}^{2}\right)$. Then the followings are equivalent:
(1) T is extreme;
(2) (a, b, d, c) is extreme;
(3) $(a,-b, c,-d)$ is extreme;
(4) $(a,-b,-c, d)$ is extreme;
(5) $(-a,-b,-c,-d)$ is extreme.

Proof. It follows from Theorem 2.1 and the remark above of Theorem 2.1.
Theorem 2.3 ([20, Theorem 2.3]). Let $T\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)=a x_{1} x_{2}+b y_{1} y_{2}+$ $c\left(x_{1} y_{2}+x_{2} y_{1}\right) \in \mathcal{L}_{s}\left({ }^{2} \mathbb{R}_{h(w)}^{2}\right)$ with $a \geq 0, c \geq 0$.
(a) Let $0<w<\frac{1}{2}$. Then, $T \in \operatorname{ext} B_{\mathcal{L}_{s}\left({ }^{2} \mathbb{R}_{h(w)}^{2}\right)}$ if and only if

$$
T \in\left\{(0, \pm 1,0,0),\left(1,(1-w)^{2}, 1-w, 1-w\right),\left(1,1-w^{2}, 0,0\right)\right.
$$

$$
\left.\left(1, w^{2}-1, w, w\right),(0,1-2 w, 1,1),\left(1,-3 w^{2}+2 w-1,1-w, 1-w\right)\right\}
$$

(b) Let $w=\frac{1}{2}$. Then, $T \in \operatorname{ext} B_{\mathcal{L}_{s}\left(2 \mathbb{R}_{h\left(\frac{1}{2}\right)}^{2}\right)}$ if and only if

$$
T \in\left\{(0, \pm 1,0,0),\left(1, \frac{1}{4}, \frac{1}{2}, \frac{1}{2}\right),\left(1, \frac{3}{4}, 0,0\right),(0,0,1,1),\left(1,-\frac{3}{4}, \frac{1}{2}, \frac{1}{2}\right)\right\}
$$

(c) Let $\frac{1}{2}<w<1$. Then, $T \in \operatorname{ext} B_{\mathcal{L}_{s}\left({ }^{2} \mathbb{R}_{h(w)}^{2}\right)}$ if and only if

$$
\begin{aligned}
T \in\{ & (0, \pm 1,0,0),\left(1,(1-w)^{2}, 1-w, 1-w\right),\left(1,1-w^{2}, 0,0\right) \\
& \left.\left(1, w^{2}-1,1-w, 1-w\right),\left(\frac{1}{2 w}, \frac{w-2}{2}, \frac{1}{2}, \frac{1}{2}\right),\left(\frac{2 w-1}{2 w^{2}}, \frac{1-2 w}{2}, \frac{1}{2 w}, \frac{1}{2 w}\right)\right\}
\end{aligned}
$$

Let

$$
\begin{aligned}
& \operatorname{Norm}(T) \\
= & \left\{\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right) \in\{((1,0),(1,0)),((1,0),(w, 1)),((w, 1),(1,0)),\right. \\
& ((1,0),(w,-1)),((w,-1),(1,0)),((w, 1),(w, 1)),((w,-1),(w,-1)), \\
& \left.((w, 1),(w,-1)),((w,-1),(w, 1))\}:\left|T\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)\right|=\|T\|\right\} .
\end{aligned}
$$

We call $\operatorname{Norm}(T)$ the norming set of T.
Theorem 2.4. Let $T\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)=a x_{1} x_{2}+b y_{1} y_{2}+c x_{1} y_{2}+d x_{2} y_{1} \in$ $\mathcal{L}\left({ }^{2} \mathbb{R}_{h(w)}^{2}\right)$ with $a \geq 0$ and $c \geq d \geq 0$.
(a) Let $0<w<\frac{1}{2}$. Then, $T \in \operatorname{ext} B_{\mathcal{L}\left(2 \mathbb{R}_{h(w)}^{2}\right)}$ if and only if

$$
\begin{aligned}
T \in\{ & (0, \pm(1-w), 1,0),\left(1,-\left(w^{2}-w+1\right), 1-w, w\right),(0, \pm 1,0,0) \\
& \left(1,(1-w)^{2}, 1-w, 1-w\right),\left(1, w^{2}-1, w, w\right),(0,1-2 w, 1,1) \\
& \left.(0,-1+2 w, 1,1),\left(1,-3 w^{2}+2 w-1,1-w, 1-w\right)\right\}
\end{aligned}
$$

(b) Let $w=\frac{1}{2}$. Then, $T \in \operatorname{ext} B_{\mathcal{L}\left(\mathbb{R}_{h\left(\frac{1}{2}\right)}^{2}\right)}$ if and only if

$$
T \in\left\{\left(0, \pm \frac{1}{2}, 1,0\right),(0, \pm 1,0,0),\left(1, \frac{1}{4}, \frac{1}{2}, \frac{1}{2}\right),(0,0,1,1),\left(1,-\frac{3}{4}, \frac{1}{2}, \frac{1}{2}\right)\right\}
$$

(c) Let $\frac{1}{2}<w<1$. Then, $T \in \operatorname{ext} B_{\mathcal{L}\left({ }^{2} \mathbb{R}_{h(w)}^{2}\right)}$ if and only if

$$
\begin{aligned}
T \in & \left\{(0, \pm(1-w), 1,0),(0, \pm 1,0,0),\left(1,(1-w)^{2}, 1-w, 1-w\right)\right. \\
& \left(1, w^{2}-1,1-w, 1-w\right),\left(\frac{1}{2 w}, \frac{w-2}{2}, \frac{1}{2}, \frac{1}{2}\right),\left(0,0,1, \frac{1}{w}-1\right) \\
& \left.\left(\frac{2 w-1}{2 w^{2}}, \frac{1-2 w}{2}, \frac{1}{2 w}, \frac{1}{2 w}\right)\right\}
\end{aligned}
$$

Proof. Let $T\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)=a x_{1} x_{2}+b y_{1} y_{2}+c x_{1} y_{2}+d x_{2} y_{1} \in \mathcal{L}\left({ }^{2} \mathbb{R}_{h(w)}^{2}\right)$ with $\|T\|=1$. By the remark above of Theorem 2.1, we may assume that $a \geq 0$ and $c \geq d \geq 0$. Suppose that T is extreme. In what follows we will distinguish three cases: $(c>d=0)$ or $(c>d>0)$ or $(c=d \geq 0)$.

Case 1: $c>d=0$.
By the remark above of Theorem 2.1, we may assume that $b \geq 0$. Note that $1=\max \left\{a, a w+c,\left|a w^{2}+b\right|+c w,\left|a w^{2}-b\right|+c w\right\}$. We have the following subcases to consider:
$(a=0, b=0)$ or $(a=0, b>0)$ or $(a>0, b=0)$ or $(a>0, b>0)$.
Subcase 1: $a=0, b=0$.
Then, $1=\max \{c, c w\}$, hence, $T=(0,0,1,0)$, which is not extreme. Indeed, let $T_{1}=\left(0, \frac{1}{n}, 1,0\right), T_{2}=\left(0,-\frac{1}{n}, 1,0\right)$ for $n \in \mathbb{N}$ with $\frac{1}{n}+w<1$. Then $T=$ $\frac{1}{2}\left(T_{1}+T_{2}\right)$ and $\left\|T_{i}\right\|=1$ for $i=1,2$, which is a contradiction.

Subcase 2: $a=0, b>0$.
Then, $1=\max \{c, b+c w\}$, hence, $T=(0,1-w, 1,0)$.
Claim: $T=(0,1-w, 1,0)$ is extreme.
Let $T_{1}=(\epsilon,(1-w)+\delta, 1+\gamma, \rho), T_{2}=(-\epsilon,(1-w)-\delta, 1-\gamma,-\rho)$ be such that $\left\|T_{1}\right\|=1=\left\|T_{2}\right\|$ for some $\epsilon, \delta, \gamma, \rho \in \mathbb{R}$. Since $\left|T_{i}((1,0),(w, 1))\right| \leq$ $1,\left|T_{i}((1,0),(w,-1))\right| \leq 1,\left|T_{i}((w, 1),(w, 1))\right| \leq 1,\left|T_{i}((w, 1),(w,-1))\right| \leq 1$, we have

$$
\begin{aligned}
w \epsilon+\gamma & =0, \\
w \epsilon-\gamma & =0 \\
w^{2} \epsilon+\delta+w \gamma+w \rho & =0 \\
w^{2} \epsilon-\delta-w \gamma+w \rho & =0
\end{aligned}
$$

which shows that $0=\epsilon=\delta=\gamma=\rho$. Hence, $T=(0,1-w, 1,0)$ is extreme. By Theorem 2.2, $(0,-(1-w), 1,0)$ is extreme.

Subcase 3: $a>0, b=0$.
Then, $1=\max \left\{a, a w+c, a w^{2}+c w\right\}$. Note that $a w^{2}+c w \leq a w^{2}+(1-$ $a w) w=w$. Let $T_{1}=\left(a, \frac{1}{n}, c, \frac{1}{n}\right), T_{2}=\left(a,-\frac{1}{n}, c,-\frac{1}{n}\right)$ for some $n \in \mathbb{N}$ with
$a w^{2}+c w+\frac{1+w}{n}<1$. Then $T=\frac{1}{2}\left(T_{1}+T_{2}\right)$ and $\left\|T_{i}\right\|=1$ for $i=1,2$, which is a contradiction.

Subcase 4: $a>0, b>0$.
Then, $1=\max \left\{a, a w+c, a w^{2}+b+c w\right\}$. Note that

$$
\operatorname{Norm}(T) \subseteq\{((1,0),(1,0)),((1,0),(w, 1)),((w, 1),(w, 1))\}
$$

Then, $\left|a w^{2}-b\right|+c w<1$. If $a w^{2}-b>0$, let $T_{1}=\left(a, b-\frac{w}{n}, c, \frac{1}{n}\right), T_{2}=$ $\left(a, b+\frac{w}{n}, c,-\frac{1}{n}\right)$ for some $n \in \mathbb{N}$ with $0<b-\frac{w}{n}, b+\frac{1}{n}<1,0<c-\frac{1}{n}, c+\frac{1}{n}<$ $1, a w^{2}+b-\frac{w}{n}>0, a w^{2}-b-\frac{w}{n}>0$. Then $T=\frac{1}{2}\left(T_{1}+T_{2}\right)$ and $\left\|T_{i}\right\|=1$ for $i=1,2$, which is a contradiction. If $a w^{2}-b=0$, let $T_{1}=\left(a, b-\frac{w}{n}, c, \frac{1}{n}\right), T_{2}=$ $\left(a, b+\frac{w}{n}, c,-\frac{1}{n}\right)$ for some $n \in \mathbb{N}$ with $c w+\frac{2 w}{n}<1,0<b-\frac{w}{n}, b+\frac{1}{n}<1,0<$ $c-\frac{1}{n}, c+\frac{1}{n}<1, a w^{2}+b-\frac{w}{n}>0$. Then $T=\frac{1}{2}\left(T_{1}+T_{2}\right)$ and $\left\|T_{i}\right\|=1$ for $i=1,2$, which is a contradiction.

If $a w^{2}-b<0$, let $T_{1}=\left(a, b-\frac{w}{n}, c, \frac{1}{n}\right), T_{2}=\left(a, b+\frac{w}{n}, c,-\frac{1}{n}\right)$ for some $n \in \mathbb{N}$ with $0<b-\frac{w}{n}, b+\frac{1}{n}<1,0<c-\frac{1}{n}, c+\frac{1}{n}<1, a w^{2}+b-\frac{w}{n}>0, a w^{2}-b+\frac{w}{n}<$ $0,\left|a w^{2}-b\right|+c w+\frac{2 w}{n}<1$. Then $T=\frac{1}{2}\left(T_{1}+T_{2}\right)$ and $\left\|T_{i}\right\|=1$ for $i=1,2$, which is a contradiction.

Case 2: $c>d>0$.
We have the following subcases to consider:
$(0 \leq a<1, b \geq 0)$ or ($a=1, b \geq 0$) or $(0 \leq a<1, b<0)$ or $(a=1, b<0)$.
Subcase 1: $0 \leq a<1, b \geq 0$.
Note that $1=\max \left\{a w+c, a w^{2}+b+(c+d) w\right\}$. Calculation shows that if $b<0$, then $\operatorname{Norm}(T) \subseteq\{((1,0),(w, 1)),((w, 1),(w, 1)),((w,-1),(w, 1))\}$, and if $(a=0, b>0)$ or $(a \neq 0, b \geq 0)$, then $\operatorname{Norm}(T) \subseteq\{((1,0),(w, 1)),((w, 1)$, $(w, 1))\}$. If $a \neq 0$ or $b \neq 0$, let $T_{1}=\left(a+\frac{1}{n}, b-\frac{w}{n}, c-\frac{w}{n}, d+\frac{1}{n}\right), T_{2}=\left(a-\frac{1}{n}\right.$, $b+\frac{w}{n}, c+\frac{w}{n}, d-\frac{1}{n}$) for some $n \in \mathbb{N}$ with $a+\frac{1}{n}<1, b+\frac{w}{n}<1, c+\frac{w}{n}<1, d+\frac{1}{n}<1$. Then $T=\frac{1}{2}\left(T_{1}+T_{2}\right)$ and $\left\|T_{i}\right\|=1$ for $i=1,2$, which is a contradiction.

Therefore, $a=0=b$, and $1=\max \{c,(c+d) w\}$. Since T is extreme, $c=$ $1=(c+d) w$. Hence, $T=\left(0,0,1, \frac{1}{w}-1\right)$.

Claim: $T=\left(0,0,1, \frac{1}{w}-1\right)$ is extreme for $\frac{1}{2}<w<1$
Let $T_{1}=\left(\epsilon, \delta, 1+\gamma, \frac{1}{w}-1+\rho\right), T_{2}=\left(-\epsilon,-\delta, 1-\gamma, \frac{1}{w}-1-\rho\right)$ be such that $\left\|T_{1}\right\|=1=\left\|T_{2}\right\|$ for some $\epsilon, \delta, \gamma, \rho \in \mathbb{R}$. Since $\left|T_{i}((1,0),(w, 1))\right| \leq$ $1,\left|T_{i}((1,0),(w,-1))\right| \leq 1,\left|T_{i}((w, 1),(w, 1))\right| \leq 1,\left|T_{i}((w,-1),(w,-1))\right| \leq 1$, we have

$$
\begin{array}{r}
w \epsilon+\gamma=0, \\
w \epsilon-\gamma=0, \\
w^{2} \epsilon+\delta+w \gamma+w \rho=0, \\
w^{2} \epsilon+\delta-w \gamma-w \rho=0,
\end{array}
$$

which shows that $0=\epsilon=\delta=\gamma=\rho$.
Subcase 2: $a=1, b \geq 0$.

Note that $1=\max \left\{a, a w+c, a w^{2}+b+(c+d) w\right\}$. Hence,

$$
\operatorname{Norm}(T) \subseteq\{((1,0),(1,0)),((1,0),(w, 1)),((w, 1),(w, 1))\}
$$

Let $T_{1}=\left(1, b-\frac{w}{n}, c, d+\frac{1}{n}\right), T_{2}=\left(1, b+\frac{w}{n}, c, d-\frac{1}{n}\right)$ for some $n \in \mathbb{N}$ with $b+\frac{w}{n}<1, d+\frac{1}{n}<1$. Then $T=\frac{1}{2}\left(T_{1}+T_{2}\right)$ and $\left\|T_{i}\right\|=1$ for $i=1,2$, which is a contradiction.

Subcase 3: $0 \leq a<1, b<0$.
Note that $1=\max \left\{a w+c,\left|a w^{2}+b\right|+(c+d) w, a w^{2}-b+(c-d) w\right\}$. First, suppose that $a w^{2}+b \geq 0$. Then, $1=\max \left\{a w+c, a w^{2}+b+(c+d) w, a w^{2}-\right.$ $b+(c-d) w\}$. Hence,

$$
\operatorname{Norm}(T) \subseteq\{((1,0),(w, 1)),((w, 1),(w, 1)),((w,-1),(w, 1))\}
$$

Let $T_{1}=\left(a+\frac{1}{n}, b-\frac{w}{n}, c-\frac{w}{n}, d+\frac{1}{n}\right), T_{2}=\left(a-\frac{1}{n}, b+\frac{w}{n}, c+\frac{w}{n}, d-\frac{1}{n}\right)$ for some $n \in \mathbb{N}$ with $a+\frac{1}{n}<1, b+\frac{w}{n}<1, c+\frac{w}{n}<1, d+\frac{1}{n}<1$. Then $T=\frac{1}{2}\left(T_{1}+T_{2}\right)$ and $\left\|T_{i}\right\|=1$ for $i=1,2$, which is a contradiction. Next, suppose that $a w^{2}+b<0$. Then, $1=\max \left\{a w+c,-\left(a w^{2}+b\right)+(c+d) w, a w^{2}-b+(c-d) w\right\}$. Hence,

$$
\operatorname{Norm}(T) \subseteq\{((1,0),(w, 1)),((w,-1),(w,-1)),((w,-1),(w, 1))\}
$$

Let $T_{1}=\left(a+\frac{1}{n}, b-\frac{w^{2}}{n}, c-\frac{w}{n}, d+\frac{w}{n}\right), T_{2}=\left(a-\frac{1}{n}, b+\frac{w^{2}}{n}, c+\frac{w}{n}, d-\frac{w}{n}\right)$ for some $n \in \mathbb{N}$ with $a+\frac{1}{n}<1, b+\frac{w^{2}}{n}<1, c+\frac{w}{n}<1, d+\frac{w}{n}<1$. Then $T=\frac{1}{2}\left(T_{1}+T_{2}\right)$ and $\left\|T_{i}\right\|=1$ for $i=1,2$, which is a contradiction.

Subcase 4: $a=1, b<0$.
Note that $1=\max \left\{a, w+c,\left|w^{2}+b\right|+(c+d) w, w^{2}-b+(c-d) w\right\}$. First, suppose that $w^{2}+b \geq 0$. Then, $1=\max \left\{a, w+c, w^{2}+b+(c+d) w, w^{2}-b+(c-d) w\right\}$. Hence,
$\operatorname{Norm}(T) \subseteq\{((1,0),(1,0)),((1,0),(w, 1)),((w, 1),(w, 1)),((w,-1),(w, 1))\}$.
If $w^{2}+b>0$, let $T_{1}=\left(1, b-\frac{w}{n}, c, d+\frac{1}{n}\right), T_{2}=\left(1, b+\frac{w}{n}, c, d-\frac{1}{n}\right)$ for some $n \in \mathbb{N}$ with $w^{2}+b-\frac{w}{n}>0$. Then $T=\frac{1}{2}\left(T_{1}+T_{2}\right)$ and $\left\|T_{i}\right\|=1$ for $i=1,2$, which is a contradiction. Suppose that $w^{2}+b=0$. We claim that $(c+d) w<$ 1. If $(c+d) w=1$, then $1=c w+d w<c+w \leq 1$, which is impossible. Let $T_{1}=\left(1, b-\frac{w}{n}, c, d+\frac{1}{n}\right), T_{2}=\left(1, b+\frac{w}{n}, c, d-\frac{1}{n}\right)$ for some $n \in \mathbb{N}$ with $(c+d) w+\frac{2 w}{n}<1, w^{2}-b+\frac{w}{n}>0, b+\frac{w}{n}<1, d+\frac{1}{n}<1$. Then $T=\frac{1}{2}\left(T_{1}+T_{2}\right)$ and $\left\|T_{i}\right\|=1$ for $i=1,2$, which is a contradiction.

Next, suppose that $w^{2}+b<0$. Then, $1=\max \left\{a, w+c,-\left(w^{2}+b\right)+(c+\right.$ d) $\left.w, w^{2}-b+(c-d) w\right\}$. We will show that
$\operatorname{Norm}(T)=\{((1,0),(1,0)),((1,0),(w, 1)),((w,-1),(w,-1)),((w,-1),(w, 1))\}$.
Otherwise, we have the following subcases to consider:

$$
\operatorname{Norm}(T) \subseteq\{((1,0),(1,0)),((1,0),(w, 1)),((w,-1),(w,-1))\}
$$

or

$$
\operatorname{Norm}(T) \subseteq\{((1,0),(1,0)),((1,0),(w, 1)),((w,-1),(w, 1))\}
$$

or

$$
\operatorname{Norm}(T) \subseteq\{((1,0),(1,0)),((w,-1),(w,-1)),((w,-1),(w, 1))\}
$$

First, suppose that

$$
\operatorname{Norm}(T) \subseteq\{((1,0),(1,0)),((1,0),(w, 1)),((w,-1),(w,-1))\}
$$

Let $T_{1}=\left(1, b+\frac{w}{n}, c, d+\frac{1}{n}\right), T_{2}=\left(1, b-\frac{w}{n}, c, d-\frac{1}{n}\right)$ for some $n \in \mathbb{N}$ with $w^{2}+b+\frac{w}{n}<0, w^{2}-b-\frac{w}{n}>0,|b|+\frac{w}{n}<1, d+\frac{1}{n}<1$. Then $T=\frac{1}{2}\left(T_{1}+T_{2}\right)$ and $\left\|T_{i}\right\|=1$ for $i=1,2$, which is a contradiction.
Suppose that

$$
\operatorname{Norm}(T) \subseteq\{((1,0),(1,0)),((1,0),(w, 1)),((w,-1),(w, 1))\}
$$

Then, $-\left(w^{2}+b\right)+(c+d) w<1$. Let $T_{1}=\left(1, b-\frac{w}{n}, c, d+\frac{1}{n}\right), T_{2}=\left(1, b+\frac{w}{n}, c\right.$, $\left.d-\frac{1}{n}\right)$ for some $n \in \mathbb{N}$ with $-\left(w^{2}+b\right)+(c+d) w+\frac{2 w}{n}<1,|b|+\frac{w}{n}<1, d+\frac{1}{n}<1$. Then $T=\frac{1}{2}\left(T_{1}+T_{2}\right)$ and $\left\|T_{i}\right\|=1$ for $i=1,2$, which is a contradiction.
Suppose that

$$
\operatorname{Norm}(T) \subseteq\{((1,0),(1,0)),((w,-1),(w,-1)),((w,-1),(w, 1))\}
$$

Then, $w+c<1$. Let $T_{1}=\left(1, b+\frac{w}{n}, c+\frac{1}{n}, d\right), T_{2}=\left(1, b-\frac{w}{n}, c-\frac{1}{n}, d\right)$ for some $n \in \mathbb{N}$ with $w+c+\frac{1}{n}<1, w^{2}+b+\frac{w}{n}<0, w^{2}-b-\frac{w}{n}>0,|b|+\frac{w}{n}<1$. Then $T=\frac{1}{2}\left(T_{1}+T_{2}\right)$ and $\left\|T_{i}\right\|=1$ for $i=1,2$, which is a contradiction. Therefore, we conclude the claim. By a calculation, $T=\left(1,-\left(w^{2}-w+1\right), 1-w, w\right)$ for $w<\frac{1}{2}$.

Claim: $T=\left(1,-\left(1-w+w^{2}\right), 1-w, w\right)$ is extreme for $w<\frac{1}{2}$.
Let $T_{1}=\left(1+\epsilon,-\left(1-w+w^{2}\right)+\delta, 1-w+\gamma, w+\rho\right), T_{2}=(1-\epsilon,-(1-w+$ $\left.\left.w^{2}\right)-\delta, 1-w-\gamma, w-\rho\right)$ be such that $\left\|T_{1}\right\|=1=\left\|T_{2}\right\|$ for some $\epsilon, \delta, \gamma, \rho \in$ \mathbb{R}. Since $\left|T_{i}((1,0),(1,0))\right| \leq 1,\left|T_{i}((1,0),(w, 1))\right| \leq 1,\left|T_{i}((w,-1),(w, 1))\right| \leq$ $1,\left|T_{i}((w,-1),(w,-1))\right| \leq 1$, we have

$$
\begin{aligned}
\epsilon & =0, \\
w \epsilon+\gamma & =0, \\
w^{2} \epsilon-\delta+w \gamma-w \rho & =0, \\
w^{2} \epsilon+\delta-w \gamma-w \rho & =0,
\end{aligned}
$$

which shows that $0=\epsilon=\delta=\gamma=\rho$.
Case 3: $c=d \geq 0$.
$\overline{\text { Since } T}=(a, \bar{b}, c, c) \in \operatorname{ext} B_{\mathcal{L}\left({ }^{2} \mathbb{R}_{h(w)}^{2}\right)}$, then $T \in \operatorname{ext} B_{\mathcal{L}_{s}\left({ }^{2} \mathbb{R}_{h(w)}^{2}\right)}$. By Theorem 2.3 , for $0<w \leq \frac{1}{2}$,

$$
\begin{aligned}
T \in\{ & (0, \pm 1,0,0),\left(1,(1-w)^{2}, 1-w, 1-w\right),\left(1,1-w^{2}, 0,0\right) \\
& \left.\left(1, w^{2}-1, w, w\right),(0,1-2 w, 1,1),\left(1,-3 w^{2}+2 w-1,1-w, 1-w\right)\right\}
\end{aligned}
$$

and for $\frac{1}{2}<w<1, T \in \operatorname{ext} B_{\mathcal{L}_{s}\left({ }^{2} \mathbb{R}_{h(w)}^{2}\right)}$ if and only if

$$
T \in\left\{(0, \pm 1,0,0),\left(1,(1-w)^{2}, 1-w, 1-w\right),\left(1,1-w^{2}, 0,0\right)\right.
$$

$$
\left.\left(1, w^{2}-1,1-w, 1-w\right),\left(\frac{1}{2 w}, \frac{w-2}{2}, \frac{1}{2}, \frac{1}{2}\right),\left(\frac{2 w-1}{2 w^{2}}, \frac{1-2 w}{2}, \frac{1}{2 w}, \frac{1}{2 w}\right)\right\} .
$$

Claim: $\left(1,1-w^{2}, 0,0\right) \notin B_{\mathcal{L}\left({ }^{2} \mathbb{R}_{h(w)}^{2}\right)}$ for $0<w<1$.
Let $T_{1}=\left(1,1-w^{2},-\frac{1}{n}, \frac{1}{n}\right)$ and $T_{2}=\left(1,1-w^{2}, \frac{1}{n},-\frac{1}{n}\right)$ for a sufficiently large $n \in \mathbb{N}$ such that $\left\|T_{i}\right\|=1$ for $i=1,2$. Since $\left(1,1-w^{2}, 0,0\right)=\frac{1}{2}\left(T_{1}+T_{2}\right)$, $\left(1,1-w^{2}, 0,0\right)$ is not extreme.

Claim: $T=(0, \pm 1,0,0) \in \operatorname{ext} B_{\mathcal{L}\left(2 \mathbb{R}_{h(w)}^{2}\right)}$ for $0<w<1$.
Note that

$$
\begin{aligned}
\operatorname{Norm}(T)=\{ & ((w, 1),(w, 1)),((w,-1),(w, 1)),((w, 1),(w,-1)) \\
& ((w,-1),(w,-1))\}
\end{aligned}
$$

Let $T_{1}=(\epsilon, 1+\delta, \gamma, \rho)$ and $T_{2}=(\epsilon, 1-\delta,-\gamma,-\rho)$ be such that $\left\|T_{1}\right\|=1=\left\|T_{2}\right\|$ for some $\epsilon, \delta, \gamma, \rho \in \mathbb{R}$. Since $\left|T_{i}((w, 1),(w, 1))\right| \leq 1,\left|T_{i}((w,-1),(w, 1))\right| \leq 1$, $\left|T_{i}((w, 1),(w,-1))\right| \leq 1,\left|T_{i}((w,-1),(w,-1))\right| \leq 1$, we have

$$
\begin{aligned}
& w^{2} \epsilon+\delta+w \gamma+w \rho=0, \\
& w^{2} \epsilon-\delta+w \gamma-w \rho=0, \\
& w^{2} \epsilon+\delta-w \gamma-w \rho=0, \\
& w^{2} \epsilon-\delta-w \gamma+w \rho=0,
\end{aligned}
$$

which shows that $0=\epsilon=\delta=\gamma=\rho$.
First, suppose that $0<w \leq \frac{1}{2}$.
Claim: $T=\left(1,(1-w)^{2}, 1-w, 1-w\right) \in \operatorname{ext} B_{\mathcal{L}\left(\mathbb{R}_{h(w)}^{2}\right)}$.
Note that

$$
\operatorname{Norm}(T)=\{((1,0),(1,0)),((1,0),(w, 1)),((w, 1),(1,0)),((w, 1),(w, 1))\}
$$

Let $T_{1}=\left(1+\epsilon,(1-w)^{2}+\delta, 1-w+\gamma, 1-w+\rho\right)$ and $T_{2}=\left(1-\epsilon,(1-w)^{2}-\right.$ $\delta, 1-w-\gamma, 1-w-\rho)$ be such that $\left\|T_{1}\right\|=1=\left\|T_{2}\right\|$ for some $\epsilon, \delta, \gamma, \rho \in$ \mathbb{R}. Since $\left|T_{i}((1,0),(1,0))\right| \leq 1,\left|T_{i}((1,0),(w, 1))\right| \leq 1,\left|T_{i}((w, 1),(1,0))\right| \leq 1$, $\left|T_{i}((w, 1),(w, 1))\right| \leq 1$, we have

$$
\begin{aligned}
\epsilon & =0, \\
w \epsilon+\gamma & =0, \\
w \epsilon+\rho & =0, \\
w^{2} \epsilon+\delta+w \gamma+w \rho & =0,
\end{aligned}
$$

which shows that $0=\epsilon=\delta=\gamma=\rho$.
Claim: $T=\left(1, w^{2}-1, w, w\right) \in \operatorname{ext} B_{\mathcal{L}\left(2 \mathbb{R}_{h(w)}^{2}\right)}$.
Note that

$$
\begin{aligned}
\operatorname{Norm}(T)=\{ & ((1,0),(1,0)),((w,-1),(w,-1)),((w, 1),(w,-1)) \\
& ((w,-1),(w, 1))\}
\end{aligned}
$$

Let $T_{1}=\left(1+\epsilon, w^{2}-1+\delta, w+\gamma, w+\rho\right)$ and $T_{2}=\left(1-\epsilon, w^{2}-1-\delta, w-\gamma, w-\rho\right)$ be such that $\left\|T_{1}\right\|=1=\left\|T_{2}\right\|$ for some $\epsilon, \delta, \gamma, \rho \in \mathbb{R}$. Since $\left|T_{i}((1,0),(1,0))\right| \leq 1$, $\left|T_{i}((w,-1),(w,-1))\right| \leq 1,\left|T_{i}((w, 1),(w,-1))\right| \leq 1,\left|T_{i}((w,-1),(w, 1))\right| \leq 1$, we have

$$
\begin{aligned}
\epsilon & =0 \\
w^{2} \epsilon+\delta-w \gamma-w \rho & =0 \\
w^{2} \epsilon-\delta-w \gamma+w \rho & =0 \\
w^{2} \epsilon-\delta+w \gamma-w \rho & =0
\end{aligned}
$$

which shows that $0=\epsilon=\delta=\gamma=\rho$.
Claim: $T=(0,1-2 w, 1,1) \in \operatorname{ext} B_{\mathcal{L}\left({ }^{2} \mathbb{R}_{h(w)}^{2}\right)}$.
Note that

$$
\begin{aligned}
\operatorname{Norm}(T)=\{ & ((1,0),(w, 1)),((w, 1),(1,0)),((1,0),(w,-1)),((w,-1),(1,0)) \\
& ((w, 1),(w, 1))\}
\end{aligned}
$$

Let $T_{1}=(\epsilon, 1-2 w+\delta, 1+\gamma, 1+\rho)$ and $T_{2}=(-\epsilon, 1-2 w-\delta, 1-\gamma, 1-\rho)$ be such that $\left\|T_{1}\right\|=1=\left\|T_{2}\right\|$ for some $\epsilon, \delta, \gamma, \rho \in \mathbb{R}$. Since $\left|T_{i}((1,0),(w, 1))\right| \leq 1$, $\left|T_{i}((w, 1),(1,0))\right| \leq 1,\left|T_{i}((1,0),(w,-1))\right| \leq 1,\left|T_{i}((w, 1),(w, 1))\right| \leq 1$, we have

$$
\begin{aligned}
w \epsilon+\gamma & =0, \\
w \epsilon+\rho & =0, \\
w \epsilon-\gamma & =0, \\
w^{2} \epsilon+\delta+w \gamma+w \rho & =0,
\end{aligned}
$$

which shows that $0=\epsilon=\delta=\gamma=\rho$.
Claim: $T=\left(1,-3 w^{2}+2 w-1,1-w, 1-w\right) \in \operatorname{ext} B_{\mathcal{L}\left({ }^{2} \mathbb{R}_{h(w)}^{2}\right)}$.
Note that

$$
\operatorname{Norm}(T)=\{((1,0),(1,0)),((1,0),(w, 1)),((w, 1),(1,0)),((w,-1),(w,-1))\}
$$

Let $T_{1}=\left(1+\epsilon,-3 w^{2}+2 w-1+\delta, 1-w+\gamma, 1-w+\rho\right)$ and $T_{2}=\left(1-\epsilon,-3 w^{2}+2 w-\right.$ $1-\delta, 1-w-\gamma, 1-w-\rho)$ be such that $\left\|T_{1}\right\|=1=\left\|T_{2}\right\|$ for some $\epsilon, \delta, \gamma, \rho \in$ \mathbb{R}. Since $\left|T_{i}((1,0),(1,0))\right| \leq 1,\left|T_{i}((1,0),(w, 1))\right| \leq 1,\left|T_{i}((w, 1),(1,0))\right| \leq 1$, $\left|T_{i}((w,-1),(w,-1))\right| \leq 1$, we have

$$
\begin{aligned}
\epsilon & =0, \\
w \epsilon+\gamma & =0, \\
w \epsilon+\rho & =0, \\
w^{2} \epsilon+\delta-w \gamma-w \rho & =0,
\end{aligned}
$$

which shows that $0=\epsilon=\delta=\gamma=\rho$.
Next, suppose that $\frac{1}{2}<w<1$.
Claim: $T=\left(1,(1-w)^{2}, 1-w, 1-w\right) \in \operatorname{ext} B_{\mathcal{L}\left(\mathbb{R}_{h(w)}^{2}\right)}$.

Note that

$\operatorname{Norm}(T)=\{((1,0),(1,0)),((1,0),(w, 1)),((w, 1),(1,0)),((w, 1),(w, 1))\}$.
Let $T_{1}=\left(1+\epsilon,(1-w)^{2}+\delta, 1-w+\gamma, 1-w+\rho\right)$ and $T_{2}=\left(1-\epsilon,(1-w)^{2}-\right.$ $\delta, 1-w-\gamma, 1-w-\rho)$ be such that $\left\|T_{1}\right\|=1=\left\|T_{2}\right\|$ for some $\epsilon, \delta, \gamma, \rho \in$ \mathbb{R}. Since $\left|T_{i}((1,0),(1,0))\right| \leq 1,\left|T_{i}((1,0),(w, 1))\right| \leq 1,\left|T_{i}((w, 1),(1,0))\right| \leq 1$, $\left|T_{i}((w, 1),(w, 1))\right| \leq 1$, we have

$$
\begin{aligned}
\epsilon & =0, \\
w \epsilon+\gamma & =0, \\
w \epsilon+\rho & =0, \\
w^{2} \epsilon+\delta+w \gamma+w \rho & =0,
\end{aligned}
$$

which shows that $0=\epsilon=\delta=\gamma=\rho$.
Claim: $T=\left(1, w^{2}-1,1-w, 1-w\right) \in \operatorname{ext} B_{\mathcal{L}\left(2 \mathbb{R}_{h(w)}^{2}\right)}$.
Note that

$$
\begin{aligned}
\operatorname{Norm}(T)=\{ & ((1,0),(1,0)),((1,0),(w, 1)),((w, 1),(1,0)),((w, 1),(w,-1)), \\
& ((w,-1),(w, 1))\} .
\end{aligned}
$$

Let $T_{1}=\left(1+\epsilon, w^{2}-1+\delta, 1-w+\gamma, 1-w+\rho\right)$ and $T_{2}=\left(1-\epsilon, w^{2}-1-\right.$ $\delta, 1-w-\gamma, 1-w-\rho)$ be such that $\left\|T_{1}\right\|=1=\left\|T_{2}\right\|$ for some $\epsilon, \delta, \gamma, \rho \in$ \mathbb{R}. Since $\left|T_{i}((1,0),(1,0))\right| \leq 1,\left|T_{i}((1,0),(w, 1))\right| \leq 1,\left|T_{i}((w, 1),(1,0))\right| \leq 1$, $\left|T_{i}((w, 1),(w,-1))\right| \leq 1$, we have

$$
\begin{aligned}
\epsilon & =0, \\
w \epsilon+\gamma & =0, \\
w \epsilon+\rho & =0, \\
w^{2} \epsilon-\delta-w \gamma+w \rho & =0,
\end{aligned}
$$

which shows that $0=\epsilon=\delta=\gamma=\rho$.
Claim: $\left.T=\left(\frac{1}{2 w}, \frac{2-w}{2}, \frac{1}{2}, \frac{1}{2}\right) \in \operatorname{ext} B_{\mathcal{L}\left({ }^{2} \mathbb{R}_{h(w)}^{2}\right)}\right)$.
Note that
$\operatorname{Norm}(T)=\{((1,0),(w, 1)),((w, 1),(1,0)),((w,-1),(w,-1)),((w, 1),(w,-1))\}$. Let $T_{1}=\left(\frac{1}{2 w}+\epsilon, \frac{2-w}{2}+\delta, \frac{1}{2}+\gamma, \frac{1}{2}+\rho\right)$ and $T_{2}=\left(\frac{1}{2 w}-\epsilon, \frac{2-w}{2}-\delta, \frac{1}{2}-\gamma, \frac{1}{2}-\rho\right)$ be such that $\left\|T_{1}\right\|=1=\left\|T_{2}\right\|$ for some $\epsilon, \delta, \gamma, \rho \in \mathbb{R}$. Since $\left|T_{i}((1,0),(w, 1))\right| \leq 1$, $\left|T_{i}((w, 1),(1,0))\right| \leq 1,\left|T_{i}((w,-1),(w,-1))\right| \leq 1,\left|T_{i}((w, 1),(w,-1))\right| \leq 1$, we have

$$
\begin{aligned}
w \epsilon+\gamma & =0, \\
w \epsilon+\rho & =0, \\
w^{2} \epsilon+\delta-w \gamma-w \rho & =0, \\
w^{2} \epsilon-\delta-w \gamma+w \rho & =0,
\end{aligned}
$$

which shows that $0=\epsilon=\delta=\gamma=\rho$.

Claim: $T=\left(\frac{2 w-1}{2 w^{2}}, \frac{1-2 w}{2}, \frac{1}{2 w}, \frac{1}{2 w}\right) \in \operatorname{ext} B_{\mathcal{L}\left(\mathbb{R}_{h(w)}^{2}\right)}$.
Note that
$\operatorname{Norm}(T)=\{((1,0),(w, 1)),((w, 1),(1,0)),((w, 1),(w, 1)),((w,-1),(w,-1))\}$.
Let $T_{1}=\left(\frac{2 w-1}{2 w^{2}}+\epsilon, \frac{1-2 w}{2}+\delta, \frac{1}{2 w}+\gamma, \frac{1}{2 w}+\rho\right)$ and $T_{2}=\left(\frac{2 w-1}{2 w^{2}}-\epsilon, \frac{1-2 w}{2}-\right.$ $\left.\delta, \frac{1}{2 w}-\gamma, \frac{1}{2 w}-\rho\right)$ be such that $\left\|T_{1}\right\|=1=\left\|T_{2}\right\|$ for some $\epsilon, \delta, \gamma, \rho \in \mathbb{R}$. Since $\left|T_{i}((1,0),(w, 1))\right| \leq 1,\left|T_{i}((w, 1),(1,0))\right| \leq 1,\left|T_{i}((w, 1),(w, 1))\right| \leq 1$, $\left|T_{i}((w,-1),(w,-1))\right| \leq 1$, we have

$$
\begin{aligned}
w \epsilon+\gamma & =0, \\
w \epsilon+\rho & =0, \\
w^{2} \epsilon+\delta+w \gamma+w \rho & =0, \\
w^{2} \epsilon+\delta-w \gamma-w \rho & =0,
\end{aligned}
$$

which shows that $0=\epsilon=\delta=\gamma=\rho$. Therefore, we complete the proof.

References

[1] R. M. Aron, Y. S. Choi, S. G. Kim, and M. Maestre, Local properties of polynomials on a Banach space, Illinois J. Math. 45 (2001), no. 1, 25-39.
[2] Y. S. Choi, H. Ki, and S. G. Kim, Extreme polynomials and multilinear forms on l_{1}, J. Math. Anal. Appl. 228 (1998), no. 2, 467-482.
[3] Y. S. Choi and S. G. Kim, The unit ball of $\mathcal{P}\left({ }^{2} l_{2}^{2}\right)$, Arch. Math. (Basel) 71 (1998), no. 6, 472-480.
[4] , Extreme polynomials on c_{0}, Indian J. Pure Appl. Math. 29 (1998), no. 10, 983-989.
[5] , Smooth points of the unit ball of the space $\mathcal{P}\left({ }^{2} l_{1}\right)$, Results Math. 36 (1999), no. 1-2, 26-33.
[6] , Exposed points of the unit balls of the spaces $\mathcal{P}\left({ }^{2} l_{p}^{2}\right)(p=1,2, \infty)$, Indian J. Pure Appl. Math. 35 (2004), no. 1, 37-41.
[7] S. Dineen, Complex Analysis on Infinite Dimensional Spaces, Springer-Verlag, London, 1999.
[8] , Extreme integral polynomials on a complex Banach space, Math. Scand. 92 (2003), no. 1, 129-140.
[9] B. C. Grecu, Geometry of 2-homogeneous polynomials on l_{p} spaces, $1<p<\infty$, J. Math. Anal. Appl. 273 (2002), no. 2, 262-282.
[10] B. C. Grecu, G. A. Munoz-Fernandez, and J. B. Seoane-Sepulveda, Unconditional constants and polynomial inequalities, J. Approx. Theory 161 (2009), no. 2, 706-722.
[11] S. G. Kim, Exposed 2-homogeneous polynomials on $\mathcal{P}\left({ }^{2} l_{p}^{2}\right)(1 \leq p \leq \infty)$, Math. Proc. R. Ir. Acad. 107 (2007), no. 2, 123-129.
[12] _, The unit ball of $\mathcal{L}_{s}\left({ }^{2} l_{\infty}^{2}\right)$, Extracta Math. 24 (2009), no. 1, 17-29.
[13] $\overline{79-94}$, The unit ball of $\mathcal{P}\left({ }^{2} d_{*}(1, w)^{2}\right)$, Math. Proc. R. Ir. Acad. 111A (2011), no. 2,
[14] , The unit ball of $\mathcal{L}_{s}\left({ }^{2} d_{*}(1, w)^{2}\right)$, Kyungpook Math. J. 53 (2013), no. 2, 295-306.
[15] , Smooth polynomials of $\mathcal{P}\left({ }^{2} d_{*}(1, w)^{2}\right)$, Math. Proc. R. Ir. Acad. 113A (2013), no. 1, 45-58.
[16] , Extreme bilinear forms of $\mathcal{L}\left({ }^{2} d_{*}(1, w)^{2}\right)$, Kyungpook Math. J. 53 (2013), no. 4, 625-638
[17] , Exposed symmetric bilinear forms of $\mathcal{L}_{s}\left({ }^{2} d_{*}(1, w)^{2}\right)$, Kyungpook Math. J. 54 (2014), no. 3, 341-347.
[18] 1, 119-126
[19] , Exposed 2-homogeneous polynomials on the 2-dimensional real predual of Lorentz sequence space, Mediterr. J. Math. 13 (2016), no. 5, 2827-2839.
[20] , Extremal problems for $\mathcal{L}_{s}\left({ }^{2} \mathbb{R}_{h(w)}^{2}\right)$, to appear in the Kyungpook Math. J. 57.
[21] , The geometry of the space of symmetric bilinear forms on \mathbb{R}^{2} with octagonal norm, Kyungpook Math. J. 56 (2016), 781-791.
[22] S. G. Kim and S. H. Lee, Exposed 2-homogeneous polynomials on Hilbert spaces, Proc. Amer. Math. Soc. 131 (2003), no. 2, 449-453.
[23] J. Lee and K. S. Rim, Properties of symmetric matrices, J. Math. Anal. Appl. 305 (2005), no. 1, 219-226.
[24] G. A. Munoz-Fernandez, S. Revesz, and J. B. Seoane-Sepulveda, Geometry of homogeneous polynomials on non symmetric convex bodies, Math. Scand. 105 (2009), no. 1, 147-160.
[25] G. A. Munoz-Fernandez and J. B. Seoane-Sepulveda, Geometry of Banach spaces of trinomials, J. Math. Anal. Appl. 340 (2008), no. 2, 1069-1087.
[26] R. A. Ryan and B. Turett, Geometry of spaces of polynomials, J. Math. Anal. Appl. 221 (1998), no. 2, 698-711.

Sung Guen Kim
Department of Mathematics
Kyungpook National University
Daegu 702-701, Korea
E-mail address: sgk317@knu.ac.kr

[^0]: Received October 19, 2015; Revised November 29, 2016.
 2010 Mathematics Subject Classification. Primary 46A22.
 Key words and phrases. bilinear forms, extreme points, hexagonal norms on \mathbb{R}^{2}.
 This research was supported by the Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education, Science and Technology (2013R1A1A2057788).

