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ON LIE-ADMISSIBLE ALGEBRAS ASSOCIATED WITH
INVARIANT BILINEAR FORMS

By Youngso Ko* aND Hyo CHUL MYUNG**

1. Introduction

For a nonassociative algebra A, denote by A~ the algebra with multipli-
cation [z, y]=zy—yzx defined on the vector space A. Then A is said to be
Lie-admissible if A~ is a Lie algebra; that is, A~ satisfies the Jacobi identity

[z, 5] =]+ Ly, 2], 23+ L=, 2, y1=0. (1
The well-known examples of Lie-admissible algebras are the associative
algebras and Lie algebras, and various types of Lie-admissible algebras have
recently been studied in conjunction with physical applications. In fact, Lie-
admissible algebras arise both in the classical and quantum mechanics. For
this, the reader may be referred to Santilli [10], Okubo [8] and Myung
(6.

The objective of this note is to construct various types of Lie-admissible
algebras from an algebra with an invariant bilinear form. Our construction
is motivated by two forms of mutations which were investigated in the recent
work of Ktorides, Myung and Santilli [3] and Okubo and Myung [97.
Specifically, let. A be-an asseciative algebra over a field F with product zy.
For fixed scalars 4,1 with 2#y in F, we denote by A(4, g) the algebra
with multiplication

zHy=2Ary-+ Uy (2)
defined on the vector space A. The algebra A(A,x) is called the (4, )
~mutation of A, Another type of mutation stems from the recent classification
of simple flexible Lie-admissible algebras given by Okubo and Myung [9].
Let M, be the vector space of (n+1) X (n+1) trace 0 matrices over a field

F of characteristic 0. For a fixed scalar ﬂi*];, define a new multiplication

on M, as

xxy=pry+ (1—p) yx— n_,1_1 Tr(zy) 1 (3)
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where zy is the matrix product and 7 is the (z+1) X (#+1) wunit matrix.’
In fact, it is shown in [9] that if A is a flexible algebra over an algebrai-
cally closed ﬁeld( of. c,barag&er?tlc 0 such that A is a simple. Lie . algebra,
then A is either 3 ‘1 ,glgehm or. an algebra glven by (3) The latter case
occurs only when A- is a simple Lie algebra of type 4, (2>2).

Our construction is designed to generalize both mutations described by (2)
and (3). Finally, we relate the present construction to quasi-associative
algebras.

2. The const‘rnetm

" Let A be a nonassocmtwe algebra over a field F. A symmetrxc bllmear
form ( , ) definéd on ‘A is called invariant if it’ saﬁsﬁes ’

(xy, 2)=(z,y2) @
for all z, ¥, z&A. Also; a linear funcuonal ton Ais: calleﬂ an mvanant
form on A if it satxsﬁes ~ " S S ‘

R T ©®

A t((x.?)z)““t(x(yz)) C : : (6
for z,y,z€A. If ¢'is an idvariant form on ‘A, then setting . '

. (z, y) =t(zy) . '
defines - an mvanant bilinear form on A Suppose now that A has a umt
element e, i.e., ze=ex=2zx for zeA. If (, ) is an’ mvanant *bilinear form
on A then settiig (e, z)==t(z) gives an 1nvanant form .z on A _

" There ‘are two well-konwn classes qf algebras wlnch poesess an invariarit
bilinear form. If L is a Lie algebra over F and p is a ﬁnlt&dxmensmnal
representation of L, then the trace form LT

(z, ) =Trp(z)p(y) - )
and, in partlcular the Kﬂhng Sfovrm are mvanant bilinear for;ns on L. An
algebra A over F is ed a noncommutatwe Jordan qlgebra 1f 1t satlsﬁes the
ﬁexlble law and Jordan dentity . T 7. o

(xy)x-x(yx), L e (8}

() z=2(yx). €)
Denote by R, and L, the right and left maltiplications by z in 4; ieé.,
yR,=yx and yL,=zy. Schafer [11] has shown that if A is a finite-dimen-
smnal noncommutative Jordan algebta over a ﬁeld of characteristic 0 then

(z,9) —-Tr(RI,+L,,> ‘ o (10)

becomes an invariant Bﬂmear form on A. Notlce also that the asgocxatl,ve
algehras and the Lie algebras are noncommutative Jordan a.lgebras.
Let A now:be any algebra over F with ‘an invariant bilimear. form -(, ).
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Let ¢ “be a ﬁxed element in A. For two fixed scalars’ A, 1 with 1% [1 in F,
we introduce a rultiplication in the vector space A by o
xxy=Azy-+puyrx—(r,y)c" - S (1D
and denote the resulting algebra by A(4, z,¢). To facilitate the computatlon,
denote the associator and commutator in A{4, ¢, c) by _
(z, 3, )%= (zxy) ¥z~ z* (y*~), ‘ | (12)
Lz, y]**x*y yh. ' (13)
We compute from (11) o '
(axry) se=A[A(xy) =+ p= (xy) — (23, :)c}-r![l (yz)x+pz (yx) — (yx, 2)e]
+ (z, ) [Aez+pze— (e, =) €],
zx (ysz) = Az (y2) +p(yz) 2 — (z, y:)c]-L#Lix("y)Jrﬂ( y)r—(x, :y)c
— (9, 2) [Azc+ pex— (x, €)c]
and consequently
(2,5, 2)*=2%(z, 3, 2) — 1*(x, y,~)+2ﬂ[~(xy)+(yx) —(y)z—a(2y
+ AL (y, =) 2c— (z, ») e+l (3, D) ex— (=, y)~v] '
+0(z, ) (6, 2) — (3, 2) (x,0) Je - (14
where (z,y,2) and [z, y] respectively 1nd1cate the associator and commutator
in A. In particular, (14) implies ‘ -
(z,, 2)*=(—p?) (z, 9, ) + A—p) (x, y)[x, cl. (15)
Therefore, if A is flexible and [ A4, ¢]=0 then A(4, g, ¢) is flexible. Also we-
note '

Lz, y1*=(A—p) Lz, 5] (16)

and hence A(4, p,¢)~ is isomorphic to A~ via the mapping x — A_lzr’ zEA.

This shows that A(4, ¢, ¢) is Lie-admissible if and only if A is Lie-admis-
sible. We summarize these in

THEOREM 1. Let A be arn algebra over a field F with an invariant bilinear
form. For a fixed element ¢ ¢ A and A, p with A+p in F, let A(d, p,¢c) be
the algebra defined by (11). Then A(A, u,¢) is Lie-admissible if and only
if A is. Furthermore, if A is flexible and. [c, A1=0 then A(A, yt,c) is flexible

also.

If A has an mvarxant linear form Z then we define a multiphcatxon in
A by ! ‘

ZRy= 2xy+uy7: t(xy)c an
When (z, ) is replaced by #{zy), the relations (14) — (16) with (17) hold
without modification. If one takes ¢=0 then A(4, , 0) is the (4, ) -mutation -
of A given by (2). On the other hand, if Ais the (n++1) X (n+1) matrix

Tr(a:y) then AA4,1—41) is the‘

algebra over F and we set (z,y)=
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algebra described by (3). Therefore, the present construction generalizes two
mutations given by (2) and (3) both in its setting and underlying algebraic
structure of the given algebra.

The underlying algebraic structure of A(2,s,¢c) is quite different from
that of A while A~ and A(4, ¢£,¢)~ have the same structure. For example,
when A is flexible or even associative, A(4,g,¢) is not in general flexible.
A well-known example for this is the pseudo-octonion algebra introduced
by Okubo [7]. Here we give another example for the situation. Let L be
a finite-dimensional semisimple Lie algebra over a field F of characteristic
0 and let ( , ) be the Killing form. Then by (15), L(4 ,c) is flexible
if and only if (z,y)[z,c]=0 for all z,ye L. Since the center of L is 0,
there exists an z#0 in L such that [x,c]#0, Thus if L(,u,¢) is flexible,
one would have (z,%)=0 for all y&L and this is absurd, since (, ) is
nondegenerate. Thus L(A, g,¢) for ¢#0 can not be flexible,

The algebras in the above construction are all finite-dimensional. However,
an algebra of infinite dimension may be constructed as follows. Let L be a
finite-dimensional Lie_ algebra over a field F of characteristic 0 and let p be
a ﬁmte-dlmensmnal representation of L acting on a vector space V over F.
Let U(L) be the universal enveloping algebra of L. Then p is extended to
a unigue homomorphism of U(L) into HompV. Therefore, we can define a
trace form on U(L) by

t,(z)=Trp(z), z€U(L).
Then the bilinear form (, ) on U(L) defined by (z,y),=t,(zy) is clearly
invariant. Thus the algebra U(L) (A, g, ¢) is defined by means of (11) and
is flexible Lie-admissible if ¢ is in the center of U(L); for example, if ¢
is a Casimir invariant.

3. Quasi-associative algebras

An important subclass of noncommautative Jordan algebras is the class of
quasi-associative algebras. An algebra- A over a field F is called guasi~associ-
ative if there exists an extension field K of F and an associative algebra
B over K such that Ag=B(2) for some 2 €K, where Ag is the scalar
extension of A to K and B(?) is the algebra with multiplication

xoy=Azy+ (1—-A)yz. , (18)
Any quasi-associative algebra is flexible Lie-admissible [1]. Let B be an
associative algebra over F.and let p be an element in B. For a fixed scalar
A#~—1 in F, define a product in B by . , .

xry=zpy—Aypz (19)
and denote the resulting algebra by B(p, 1p), called "the (p, Ap)-mutation of
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B. Then it is easily seen that B(p,Ap) is flexible Lie-admissible.

Also, we have zxy=pzx(ap)y+ (1—p)y(ap)x where y=—1~£7 and a=1—4.
If we donte by B# the algebra with multiplication z-y=z(ap)y then B(p, Ap)
=B“P(y). Since B is associative, B(p,4p) is quasi-associative. Notice
also that the (4, #)-mutation is a special case of the (p,4p)-mutation. The
algebra B(p, 2p) has been investigated in [5] and arises from a generaliza-
tion of the Heisenberg eguation in the quantum mechanics [10].

It follows from (19) that B(p, Ap) satisfies the identity

(z,3,2)* =m1-2)—2[[x, =%, v 1% (20)

In this section, we shall show that (20) is a necessary and sufficient condi-
tion for an algebra to be quasi-associative. For this, we need the following
theroem proved by Albert [1].

THEOREM 2. Let A be an algebra over a field F of characteristic=2 which
is neither associative nor a Jordan algebra. Then A is quasi-associative if and

only if A is flexible and there exists a scalar ay=0, —l in F such that

4
— Qay+1) (2, 3, 2) =Lz (zy) + (y2) 2— (yx)z—=2(ay) ] 21D
holds for all x,y,z€ A.

In an algebra 4, we introduce the notation
S5(z,y,2)=(2,9,2)+ %0+ (2,5,
If A satisfies (z,z,2)=0 for all €A then it is shown in [2] that A also
satisfies the identity

Lz, 9], 2]+ [Ly, =0, 214+ [[7, 2], y1=28(z, 5, 2). (22)
The general form of (20) in any algebra A is written as
(z,9,2) =al[%, 2], y], a€F. (23)

LeMMA 3. Let A be an algebra over F of characteristic 2. If A satisfies

(23) with a#-—%— then A is noncommutative Jordan and Lie~admissible.

Proof. Setting z=2z and =22 in (23) gives in turn the flexible law (=,
v,z2)=0 and the Jordan identity (22,y,2)=0. By permuting r—y—:z—uz,
we obtain from (23)

a[[y7 z]’ sz (Z, Z, y) s a[[x, _’)’], z]: (ya <y .’I)
and adding these to (23) gives
2aS(z, y, 2) =5(z, ¥, 2) (24)

in view of (22). Since aié—, this implies that S(z, y,2)=0 and hence A
is Lie-admissible by (22).
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THEOREM 4. Let A be an algebra over F of characteristic +2. If A is
flexible Lie-admissible then (21) implies (23) with ay=a. If A satisfies (23)

with a?ﬁ% then A is quasi-associative.

Proof. Suppose that A is a flexible Lie-admissible algebra satisfying (21).
Then the right side of (21) becomes

z(zy) + (y2) z— (yz) z—2(2y)
=[xz, 2], y]— (z=)y+ (z2)y
+y(22) —y(z2) +2(2y) + (92) z— (92) z— = (zy)
=[[.’ZJ, 2], y]— (.’L', z, y) + (Z, z, y) - (3’: x, 2) -+ (y’ Zy JL')
=[[z, 2], y1+2(, z, ) +2(z, =, 5)
by the flexible law. Thus (21) is written as
——‘(2“0_*"1) (xs ¥, z) =y {[[.’L', 2’:', y]"‘Z(l‘, Y, 2)} (25)
since A is Lie-admissible and so S(z,,z)=0 by (22). Thus (25) is nothing
but (21) with a=a,. Suppose now that A satisfies (23) with ai—l—, Then

by Lemma 3, A is flexible Lie-admissible and S(z,y,2) =0 in A. Thus (23)
becomes
—(z, 3, z) =a {{z, z], y]+28(z, », =)}
and expanding this gives
— Qa+1)(z, y, 2) =a {{[z, 2], y 4+ 2(3, 2, 2) +2(z, 2, »)}
- =dlz(zy) + (yx)z— (yx)z—=(2) ],
which is (21).

As an immediate consequence of Theorems 2 and 4, we have

COROLLARY 5. Let A be an algebra over F of characteristic+2 which is
neither associative nor Jordan. Then A is quasi-associative if and only if A

satisfies (23) with a:ﬁ%.
Let A(4, 1) be the (4, x)-mutation of a noncommutative Jordan algebra A

over F of characteristic 0. Denote by R.* and L.* the right and left multi-
plications by z in A(4, #). Then we have

R, *=AR,+uL,, L,*=AL.+uR, | (26)
and hence

() =L Tr(L* +R.*) =5 A+ @) Tr(La+R). @1

Sinee —%Tr(Lx-{—Rx) is an invariant form on A, so is t* on A(4, ). This
in particular applies to an associative algebra A.
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4. The kernel of an invariant form

In order to relate the present construction more closely to one described by
(3), let A be a finite dimensional algebra over a field F of characteristic 0
with an invariant form ¢ and let A have a unit element e. If ¢ is not trivial
then t(c) #0 and hence A is composed as A=Fe@®A, where A, is the
kernel of z. Notice that A, is not in general a subalgebra of the algebra
A(4, ¢, ¢) constructed by (11) though A, is always a subalgebra of A~
or A(4, 1, e)~. However, if one choose 4, s 50 as to satisfy A-+p—f(e) =0,
then Agis a subalgebra of A(Ag,e) since

t(axy) =2t (zy) +put(yz) —t(zy) f(e) = (A+u—f (e)) t(zy) =0.
By dividing by f(¢), we can further assume that f(¢) =1 and thus g=1—2.
Therefore,
Ay becomes an algebra over F with multiplication

zry=Azy+ (1— ) yz— (z,5)e (28)
where (z,y)=:¢(zy), When A is the (n+1)x(n-+1) matrix algebra over
I and (x,y)= n—1}—1 Tr(zy), (28) gives (3) as a special case.

In the remainder of this section, we investigte a method to recover the
original algebra A as a mutation of A4,. Assume 2#%— Firse we take the

vector space direct sum Ay®Fe and define a multiplication in A¢@Fe as
(z+ae) o (y+Be) = (z*y-+ay-+pz) + (@B+ (z,¥) e (29)
where z,y€ Ay, a,SEF and x*y is given by (28). Then (29) is rewritten
as
(z+ae) o (y+Be) =[Azy+ (1—A)yz+ay+pz +afe
=A(z+ae) (y+Be) + (1—4) (y+fe) (z-+ae).
Therefore, A;@®Fe=A(4), the (4,1—A)-mutation of A, and thus A= (4,
@Fe) (1) with g=(24—1)"'A. Okubo [8] has proved this when A is the
(n+1) X (n+1) matrix algebra. Since quasi-associativity is transitive [17,
we have proved.

THEOREM 6. Let A be an algebra over a field F of characteristic 0 with
an invariant bilinear form and let A have a unit element e. Then A is quasi-
associative if and only if the algebra A,DFe given by (29) is quasi—asso
ciative.

If A is the quasi-associative algebra in Theorem 6 then, by (28) and (14),
we have

(2,9, 2)*=2(z,9,2) + (1= D%z, 3, 2) +AA— D) [=(ay) +
(yo)z— (y2)z—x(2y) I+ (3, D) z— (2, ¥) =,
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since A is flexible and e is the unit element. In view of Theorm 2, this
reduces to :

- =7z y, )+ () a— (2,92 , (30)
where y=2+(1—D*11—-D @+2) for some as0, L. Okubo [8]
has obtained an identity similar to (30) for an associative algebra.
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