KYUNGPOOK Math. J. 57(2017), 223-232 https://doi.org/10.5666/KMJ.2017.57.2.223 pISSN 1225-6951 eISSN 0454-8124 © Kyungpook Mathematical Journal

Extremal Problems for $\mathcal{L}_s({}^2\mathbb{R}^2_{h(w)})$

SUNG GUEN KIM

Department of Mathematics, Kyungpook National University, Daegu 702-701, Korea e-mail: sgk317@knu.ac.kr

ABSTRACT. We classify the extreme and exposed symmetric bilinear forms of the unit ball of the space of symmetric bilinear forms on \mathbb{R}^2 with hexagonal norms. We also show that every extreme symmetric bilinear forms of the unit ball of the space of symmetric bilinear forms on \mathbb{R}^2 with hexagonal norms is exposed.

1. Introduction

We write B_E for the closed unit ball of a real Banach space E and the dual space of E is denoted by E^* . $x \in B_E$ is called an *extreme point* of B_E if $y, z \in B_E$ with $x = \frac{1}{2}(y + z)$ implies x = y = z. $x \in B_E$ is called an *exposed point* of B_E if there is a $f \in E^*$ so that f(x) = 1 = ||f|| and f(y) < 1 for every $y \in B_E \setminus \{x\}$. It is easy to see that every exposed point of B_E is an extreme point. We denote by $extB_E$ and $expB_E$ the sets of extreme and exposed points of B_E , respectively. A mapping $P: E \to \mathbb{R}$ is a continuous 2-homogeneous polynomial if there exists a continuous bilinear form L on the product $E \times E$ such that P(x) = L(x, x) for every $x \in E$. We denote by $\mathcal{L}(^2E)$ the Banach space of all continuous bilinear forms on E endowed with the norm $||L|| = \sup_{||x|| = ||y|| = 1} |L(x, y)|$. $\mathcal{L}_s(^2E)$ denotes the subspace of $\mathcal{L}(^2E)$ of all continuous 2-homogeneous polynomials from E into \mathbb{R} endowed with the norm $||P|| = \sup_{||x|| = 1} |P(x)|$. For more details about the theory of multilinear mappings and polynomials on a Banach space, we refer to [7].

In 1998, Choi *et al.* ([2], [3]) characterized the extreme points of the unit ball of $\mathcal{P}(^2l_1^2)$ and $\mathcal{P}(^2l_2^2)$. In 2007, Kim [11] classified the exposed 2-homogeneous

Received March 11, 2015; revised October 1, 2015; accepted December 4, 2015.

²⁰¹⁰ Mathematics Subject Classification: 46B20.

Key words and phrases: symmetric bilinear forms, extreme points, exposed points, hexagonal norms on \mathbb{R}^2 .

This work was supported by the Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education, Science and Technology (2013R1A1A2057788).

²²³

polynomials on $\mathcal{P}(^{2}l_{p}^{2})$ $(1 \leq p \leq \infty)$. Kim ([13], [15], [19]) classified the extreme, exposed, smooth points of the unit ball of $\mathcal{P}(^{2}d_{*}(1,w)^{2})$, where $d_{*}(1,w)^{2} = \mathbb{R}^{2}$ with the octagonal norm of weight w. In 2009, Kim [12] classified the extreme, exposed, smooth points of the unit ball of $\mathcal{L}_{s}(^{2}l_{\infty}^{2})$. Kim ([14], [16], [17], [18]) classified the extreme, exposed, smooth points of the unit balls of $\mathcal{L}_{s}(^{2}d_{*}(1,w)^{2})$ and $\mathcal{L}(^{2}d_{*}(1,w)^{2})$.

We refer to ([1–6], [8–25] and references therein) for some recent work about extremal properties of multilinear mappings and homogeneous polynomials on some classical Banach spaces. Let 0 < w < 1 be fixed. We denote \mathbb{R}^2 with the hexagonal norm of weight w by

$$\mathbb{R}^{2}_{h(w)} := \{ (x, y) \in \mathbb{R}^{2} : ||(x, y)||_{h(w)} := \max\{|y|, |x| + (1 - w)|y|\} \}.$$

Recently, Kim [20] characterized the extreme points of the unit ball of $\mathcal{L}({}^{2}\mathbb{R}^{2}_{h(w)})$. In this paper, we classify the extreme and exposed symmetric bilinear forms of the unit ball of $\mathcal{L}_{s}({}^{2}\mathbb{R}^{2}_{h(w)})$. We also show that every extreme symmetric bilinear form of the unit ball of $\mathcal{L}_{s}({}^{2}\mathbb{R}^{2}_{h(w)})$ is exposed.

2. The Extreme Points of the Unit Ball of $\mathcal{L}_s({}^2\mathbb{R}^2_{h(w)})$

Let 0 < w < 1 and $T((x_1, y_1), (x_2, y_2)) = ax_1x_2 + by_1y_2 + c(x_1y_2 + x_2y_1) \in \mathcal{L}_s({}^2\mathbb{R}^2_{h(w)})$ for some reals a, b, c. For simplicity we will write $T((x_1, y_1), (x_2, y_2)) = (a, b, c)$.

Theorem 2.1. Let 0 < w < 1 and $T((x_1, y_1), (x_2, y_2)) := (a, b, c) \in \mathcal{L}_s({}^2\mathbb{R}^2_{h(w)})$. Then,

$$||T|| = \max\{|a|, |a|w + |c|, |aw^2 - b|, |aw^2 + b| + 2w|c|\}.$$

Proof. By substituting $((x_1, y_1), (x_2, y_2))$ in T for $((x_1, -y_1), (x_2, -y_2))$, we may assume that $c \ge 0$. Since $\{(\pm 1, 0), (w, \pm 1), (-w, \pm 1)\}$ is the set of all extreme points of the unit ball of $\mathbb{R}^2_{h(w)}$ and T is bilinear,

$$||T|| = \max\{|T((\pm 1, 0), (\pm 1, 0))|, |T((\pm 1, 0), (w, \pm 1))|, |T((w, \pm 1), (w, \pm 1))|\}.$$

It follows that, by symmetry of T,

$$\begin{split} \|T\| &= \max\{|T((1,0), (1,0))|, |T((1,0), (w,1))|, |T((1,0), (w,-1))|, \\ &|T((w,1), (w,1))|, |T((w,-1), (w,-1))|, |T((w,1), (w,-1))|\} \\ &= \max\{|a|, |a|w+c, |aw^2-b|, |aw^2+b|+2wc\}. \end{split}$$

Note that if ||T|| = 1, then $|a| \le 1$, $|b| \le 1$ and $|c| \le 1$. Let

$$\begin{split} Norm(T) &= \{ ((x_1, y_1), (x_2, y_2)) \in \{ ((1, 0), \ (1, 0)), ((1, 0), \ (w, 1)), ((1, 0), \ (w, -1)), \\ &\quad ((w, 1), \ (w, 1)), ((w, -1), \ (w, -1)), ((w, 1), \ (w, -1)) \} : \\ &\quad |T((x_1, y_1), (x_2, y_2))| = \|T\| \}. \end{split}$$

We call Norm(T) the norming set of T.

Theorem 2.2. Let 0 < w < 1 and $T((x_1, y_1), (x_2, y_2)) = ax_1x_2 + by_1y_2 + c(x_1y_2 + x_2y_1) \in \mathcal{L}_s({}^2\mathbb{R}^2_{h(w)})$ with ||T|| = 1. Then, T is extreme if and only if Norm(T) has exactly three elements.

Proof. Without loss of generality we may assume that $a, c \geq 0$. (\Leftarrow) : We have 20 cases as follows: Case 1: $Norm(T) = \{((1,0), (1,0)), ((1,0), (w,1)), ((1,0), (w,-1))\}$ Case 2: $Norm(T) = \{((1,0), (1,0)), ((1,0), (w,1)), ((w,1), (w,1))\}$ Case 3: $Norm(T) = \{((1,0), (1,0)), ((1,0), (w,1)), ((w,-1), (w,-1))\}$ Case 4: $Norm(T) = \{((1,0), (1,0)), ((1,0), (w,1)), ((w,1), (w,-1))\}$ Case 5: $Norm(T) = \{((1,0), (1,0)), ((1,0), (w,-1)), ((w,1), (w,1))\}$ Case 6: $Norm(T) = \{((1,0), (1,0)), ((1,0), (w,-1)), ((w,-1), (w,-1))\}$ Case 7: $Norm(T) = \{((1,0), (1,0)), ((1,0), (w, -1)), ((w, 1), (w, -1))\}$ Case 8: $Norm(T) = \{((1,0), (1,0)), ((w,1), (w,1)), ((w,-1), (w,-1))\}$ Case 9: $Norm(T) = \{((1,0), (1,0)), ((w,1), (w,1)), ((w,1), (w,-1))\}$ Case 10: $Norm(T) = \{((1,0), (1,0)), ((w,-1), (w,-1)), ((w,1), (w,-1))\}$ Case 11: $Norm(T) = \{((1,0), (w,1)), ((1,0), (w,-1)), ((w,1), (w,1))\}$ Case 12: $Norm(T) = \{((1,0), (w,1)), ((1,0), (w,-1)), ((w,-1), (w,-1))\}$ Case 13: $Norm(T) = \{((1,0), (w,1)), ((1,0), (w,-1)), ((w,1), (w,-1))\}$ Case 14: $Norm(T) = \{((1,0), (w,1)), ((w,1), (w,1)), ((w,-1), (w,-1))\}$ Case 15: $Norm(T) = \{((1,0), (w,1)), ((w,1), (w,1)), ((w,1), (w,-1))\}$ Case 16: $Norm(T) = \{((1,0), (w,1)), ((w,-1), (w,-1)), ((w,1), (w,-1))\}$ Case 17: $Norm(T) = \{((1,0), (w, -1)), ((w, 1), (w, 1)), ((w, -1), (w, -1))\}$ Case 18: $Norm(T) = \{((1,0), (w, -1)), ((w, 1), (w, 1)), ((w, 1), (w, -1))\}$ Case 19: $Norm(T) = \{(1,0), (w,-1), ((w,-1), (w,-1)), ((w,1), (w,-1))\}$ Case 20: $Norm(T) = \{((w, 1), (w, 1)), ((w, -1), (w, -1)), ((w, 1), (w, -1))\}.$

We will consider each case.

Case 1: $Norm(T) = \{((1,0), (1,0)), ((1,0), (w,1)), ((1,0), (w,-1))\}$ Note that T does not exist in case 1.

Case 2: $Norm(T) = \{((1,0), (1,0)), ((1,0), (w,1)), ((w,1), (w,1))\}$

Then $T = (1, (1-w)^2, 1-w)$ for all 0 < w < 1. Note that $T = (1, (1-w)^2, 1-w)$ is extreme for all 0 < w < 1. Indeed, let $T_1 = (1 + \epsilon, (1-w)^2 + \delta, 1-w+\gamma), T_2 = (1 - \epsilon, (1-w)^2 - \delta, 1-w-\gamma)$ be such that $||T_1|| = 1 = ||T_2||$ for some $\epsilon, \delta, \gamma \in \mathbb{R}$. Since $|T_i((1,0), (1,0))| \le 1, |T_i((1,0), (w,1))| \le 1, |T_i((w,1), (w,1))| \le 1$, we have $0 = \epsilon = \delta = \gamma$.

Case 3: $Norm(T) = \{((1,0), (1,0)), ((1,0), (w,1)), ((w,-1), (w,-1))\}$

Then $T = (1, -3w^2 + 2w - 1, 1 - w)$ for all $0 < w \leq \frac{1}{2}$. Note that $T = (1, -3w^2 + 2w - 1, 1 - w)$ is extreme for all $0 < w \leq \frac{1}{2}$. Indeed, let $T_1 = (1 + \epsilon, -3w^2 + 2w - 1 + \delta, 1 - w + \gamma), T_2 = (1 - \epsilon, -3w^2 + 2w - 1 - \delta, 1 - w - \gamma)$ be such that $||T_1|| = 1 = ||T_2||$ for some $\epsilon, \delta, \gamma \in \mathbb{R}$. Since $|T_i((1,0), (1,0))| \leq 1$

 $1, |T_i((1,0), (w,1))| \le 1, |T_i((w,-1), (w,-1))| \le 1$, we have

$$\begin{aligned} \epsilon &= 0\\ w\epsilon + \gamma &= 0\\ w^2\epsilon + \delta - 2w\gamma &= 0. \end{aligned}$$

which show that $0 = \epsilon = \delta = \gamma$.

Case 4: $Norm(T) = \{((1,0), (1,0)), ((1,0), (w,1)), ((w,1), (w,-1))\}$

Then $T = (1, w^2 - 1, 1 - w)$ for all $w \ge \frac{1}{2}$. Note that $T = (1, w^2 - 1, 1 - w)$ is extreme for all $w \ge \frac{1}{2}$. Indeed, let $T_1 = (1 + \epsilon, w^2 - 1 + \delta, 1 - w + \gamma), T_2 = (1 - \epsilon, w^2 - 1 - \delta, 1 - w - \gamma)$ be such that $||T_1|| = 1 = ||T_2||$ for some $\epsilon, \delta, \gamma \in \mathbb{R}$. Since $|T_i((1,0), (1,0))| \le 1, |T_i((1,0), (w, 1))| \le 1, |T_i((w, 1), (w, -1))| \le 1$, we have

$$\begin{aligned} \epsilon &= 0 \\ w\epsilon + \gamma &= 0 \\ w^2\epsilon - \delta &= 0, \end{aligned}$$

which show that $0 = \epsilon = \delta = \gamma$.

Case 5: $Norm(T) = \{((1,0), (1,0)), ((1,0), (w, -1)), ((w, 1), (w, 1))\}$ Note that T does not exist in case 5. Case 6: $Norm(T) = \{((1,0), (1,0)), ((1,0), (w, -1)), ((w, -1), (w, -1)))\}$ Note that T does not exist in case 6. Case 7: $Norm(T) = \{((1,0), (1,0)), ((1,0), (w, -1)), ((w, 1), (w, -1)))\}$ Note that T does not exist in case 7. Case 8: $Norm(T) = \{((1,0), (1,0)), ((w, 1), (w, 1)), ((w, -1), (w, -1))\}$

Case 3. Norm(1) = {((1,0), (1,0)), ((w, 1), (w, 1)), ((w, -1), (w, -1))} Then $T = (1, 1-w^2, 0)$ for all 0 < w < 1. Note that $T = (1, 1-w^2, 0)$ is extreme for all 0 < w < 1. Indeed, let $T_1 = (1 + \epsilon, 1 - w^2 + \delta, \gamma), T_2 = (1 - \epsilon, 1 - w^2 - \delta, -\gamma)$ be such that $||T_1|| = 1 = ||T_2||$ for some $\epsilon, \delta, \gamma \in \mathbb{R}$. Since $|T_i((1,0), (1,0))| \le 1$, $|T_i((w, 1), (w, 1))| \le 1$, $|T_i((w, -1), (w, -1))| \le 1$, we have

$$\begin{aligned} \epsilon &= 0\\ w^2\epsilon + \delta + 2w\gamma &= 0\\ w^2\epsilon + \delta - 2w\gamma &= 0, \end{aligned}$$

which show that $0 = \epsilon = \delta = \gamma$.

Case 9: $Norm(T) = \{((1,0), (1,0)), ((w,1), (w,1)), ((w,1), (w,-1))\}$ Note that T does not exist in case 9.

Case 10: $Norm(T) = \{((1,0), (1,0)), ((w,-1), (w,-1)), ((w,1), (w,-1))\}$

Then $T = (1, w^2 - 1, w)$ for all $0 < w \leq \frac{1}{2}$. Note that $T = (1, w^2 - 1, w)$ is extreme for all $0 < w \leq \frac{1}{2}$. Indeed, let $T_1 = (1 + \epsilon, w^2 - 1 + \delta, w + \gamma), T_2 = (1 - \epsilon, w^2 - 1 - \delta, w - \gamma)$ be such that $||T_1|| = 1 = ||T_2||$ for some $\epsilon, \delta, \gamma \in \mathbb{R}$. Since $|T_i((1,0), (1,0))| \leq 1, |T_i((w,-1), (w,-1))| \leq 1, |T_i((w,1), (w,-1))| \leq 1$, we have

$$\begin{aligned} \epsilon &= 0\\ w^2 \epsilon + \delta - 2w\gamma &= 0\\ w^2 \epsilon - \delta &= 0, \end{aligned}$$

which show that $0 = \epsilon = \delta = \gamma$.

Case 11: $Norm(T) = \{((1,0), (w,1)), ((1,0), (w,-1)), ((w,1), (w,1))\}$

Then T = (0, 1-2w, 1) for all $0 < w \le \frac{1}{2}$. Note that T = (0, 1-2w, 1) is extreme for all $0 < w \leq \frac{1}{2}$. Indeed, let $T_1 = (\epsilon, 1 - 2w + \delta, 1 + \gamma), T_2 = (-\epsilon, 1 - 2w - \delta, 1 - \gamma)$ be such that $||T_1|| = 1 = ||T_2||$ for some $\epsilon, \delta, \gamma \in \mathbb{R}$. Since $|T_i((1,0), (w,1))| \leq 1$ $1, |T_i((1,0), (w,-1))| \le 1, |T_i((w,1), (w,1))| \le 1$, we have

$$w\epsilon + \gamma = 0$$

$$w\epsilon - \gamma = 0$$

$$w^{2}\epsilon + \delta + 2w\gamma = 0$$

which show that $0 = \epsilon = \delta = \gamma$.

Case 12: $Norm(T) = \{((1,0), (w,1)), ((1,0), (w,-1)), ((w,-1), (w,-1))\}$ Note that T does not exist in case 12. Case 13: $Norm(T) = \{((1,0), (w,1)), ((1,0), (w,-1)), ((w,1), (w,-1))\}$ Note that T does not exist in case 13. Case 14: $Norm(T) = \{((1,0), (w,1)), ((w,1), (w,1)), ((w,-1), (w,-1))\}$ Then $T = (\frac{2w-1}{2w^2}, \frac{1-2w}{2}, \frac{1}{2w})$ for all $w \ge \frac{1}{2}$. Note that $T = (\frac{2w-1}{2w^2}, \frac{1-2w}{2}, \frac{1}{2w})$ is extreme for all $w \ge \frac{1}{2}$. Indeed, let $T_1 = (\frac{2w-1}{2w^2} + \epsilon, \frac{1-2w}{2} + \delta, \frac{1}{2w} + \gamma), T_2 = (\frac{2w-1}{2w^2} - \epsilon, \frac{1-2w}{2} - \delta, \frac{1}{2w} - \gamma)$ be such that $||T_1|| = 1 = ||T_2||$ for some $\epsilon, \delta, \gamma \in \mathbb{R}$. Since $|T_i((1,0), (w,1))| \le 1, |T_i((w,1), (w,1))| \le 1, |T_i((w,-1), (w,-1))| \le 1$, we

$$\begin{aligned} \epsilon + \gamma &= 0\\ v^2 \epsilon + \delta + 2w\gamma &= 0\\ v^2 \epsilon + \delta - 2w\gamma &= 0, \end{aligned}$$

which show that $0 = \epsilon = \delta = \gamma$.

have

Case 15:
$$Norm(T) = \{((1,0), (w,1)), ((w,1), (w,1)), ((w,1), (w,-1))\}$$

Note that T does not exist in case 15.

l l

Case 16: $Norm(T) = \{((1,0), (w,1)), ((w,-1), (w,-1)), ((w,1), (w,-1))\}$ Then $T = (\frac{1}{2w}, \frac{w-2}{2}, \frac{1}{2})$ for all $w \ge \frac{1}{2}$. Note that $T = (\frac{1}{2w}, \frac{w-2}{2}, \frac{1}{2})$ is extreme for all $w \ge \frac{1}{2}$. Indeed, let $T_1 = (\frac{1}{2w} + \epsilon, \frac{w-2}{2} + \delta, \frac{1}{2} + \gamma), T_2 = (\frac{1}{2w} - \epsilon, \frac{w-2}{2} - \delta, \frac{1}{2} - \gamma)$ be such that $||T_1|| = 1 = ||T_2||$ for some $\epsilon, \delta, \gamma \in \mathbb{R}$. Since $|T_i((1,0), (w,1))| \le 1$. $|1, |T_i((w, -1), (w, -1))| \le 1, |T_i((w, 1), (w, -1))| \le 1$, we have

$$\begin{array}{rcl} w\epsilon+\gamma &=& 0\\ w^2\epsilon+\delta-2w\gamma &=& 0\\ w^2\epsilon-\delta &=& 0, \end{array}$$

which show that $0 = \epsilon = \delta = \gamma$.

Case 17: $Norm(T) = \{((1,0), (w, -1)), ((w, 1), (w, 1)), ((w, -1), (w, -1))\}$ Note that T does not exist in case 17. Case 18: $Norm(T) = \{((1,0), (w, -1)), ((w, 1), (w, 1)), ((w, 1), (w, -1))\}$

Note that T does not exist in case 18. Case 19: $Norm(T) = \{((1,0), (w, -1)), ((w, -1), (w, -1)), ((w, 1), (w, -1))\}$ Note that T does not exist in case 19. Case 20: $Norm(T) = \{((w, 1), (w, 1)), ((w, -1), (w, -1)), ((w, 1), (w, -1))\}$. Note that T does not exist in case 20. (\Rightarrow) : By the argument of (\Leftarrow) , it is enough to show that if Norm(T) has at

 (\Rightarrow) : By the argument of (\Leftarrow) , it is enough to show that if Norm(T) has at most two elements, then T is not extreme. For an example, let

$$Norm(T) = \{((1,0), (1,0)), ((1,0), (w,1))\}.$$

We will show that T is not extreme. Notice that

$$|T((1,0),(1,0))| = 1 = |T((1,0),(w,1))|, |T((w,1),(w,1))| < 1, |T((w,1),(w,-1))| < 1$$

Hence, $a = 1, c = 1 - w, |w^2 - b| < 1, |w^2 + b| + 2w(1 - w) < 1$. Let $\delta > 0$ such that $|w^2 - b| + \delta < 1, |w^2 + b| + 2w(1 - w) + \delta < 1$. Let $T_1 = (1, b + \delta, 1 - w)$ and $T_2 = (1, b - \delta, 1 - w)$. By Theorem 2.1, $||T_i|| = 1$ for i = 1, 2. Since $T_i \neq T, T = \frac{1}{2}(T_1 + T_2), T$ is not extreme. For the other cases, we may show that if Norm(T) has at most two elements, then T is not extreme using Theorem 2.1. Hence, we will omit the proofs. Therefore, we complete the proof. \Box

Now we are in position to describe all the extreme points of the unit ball of $\mathcal{L}_s({}^2\mathbb{R}^2_{h(w)})$.

Theorem 2.3. (a) Let $0 < w \le \frac{1}{2}$. Then,

$$extB_{\mathcal{L}_{s}(^{2}\mathbb{R}^{2}_{h(w)})} = \{ \pm (0,1,0), \pm (1,(1-w)^{2}, \pm (1-w)), \pm (1,1-w^{2},0), \\ \pm (1,w^{2}-1,\pm w), \pm (0,1-2w,\pm 1), \\ \pm (1,-3w^{2}+2w-1,\pm (1-w)) \}.$$

(b) Let $\frac{1}{2} < w < 1$. Then,

$$\begin{split} extB_{\mathcal{L}_{s}(^{2}\mathbb{R}^{2}_{h(w)})} &= \{\pm(0,1,0), \pm(1,(1-w)^{2},\pm(1-w)), \pm(1,1-w^{2},0), \\ &\pm(1,w^{2}-1,\pm(1-w)), \pm(\frac{1}{2w},\frac{w-2}{2},\pm\frac{1}{2}), \\ &\pm(\frac{2w-1}{2w^{2}},\frac{1-2w}{2},\pm\frac{1}{2w})\}. \end{split}$$

Proof. It follows from the proof of Theorem 2.2.

3. The Exposed Points of the Unit Ball of $\mathcal{L}_s({}^2\mathbb{R}^2_{h(w)})$

Theorem 3.1. Let 0 < w < 1 and $f \in \mathcal{L}_s({}^2\mathbb{R}^2_{h(w)})^*$ and $\alpha = f(x_1x_2), \beta = f(y_1y_2), \gamma = f(x_1y_2 + x_2y_1).$

(a) Let $0 < w \le \frac{1}{2}$. Then,

$$||f|| = \max\{|\beta|, |\alpha + (1-w)^2\beta| + (1-w)|\gamma|, |\alpha + (1-w^2)\beta|, \\ |\alpha - (1-w^2)\beta| + w|\gamma|, |\alpha - (3w^2 - 2w + 1)\beta| + (1-w)|\gamma|, \\ (1-2w)|\beta| + |\gamma|\}.$$

(b) Let $\frac{1}{2} < w < 1$. Then,

$$\begin{split} \|f\| &= \max\{|\beta|, |\alpha + (1-w)^2\beta| + (1-w)|\gamma|, |\alpha + (1-w^2)\beta|, \\ &|\alpha - (1-w^2)\beta| + (1-w)|\gamma|, |(\frac{1}{2w})\alpha - (\frac{2-w}{2})\beta| + \frac{1}{2}|\gamma|, \\ &|(\frac{2w-1}{2w^2})\alpha + (\frac{1-2w}{2})\beta| + \frac{1}{2w}|\gamma|\}. \end{split}$$

Proof. It follows from Theorem 2.3 and the fact that

$$\|f\| = \max_{T \in extB_{\mathcal{L}_s(^2\mathbb{R}^2_{h(w)})}} |f(T)|.$$

Note that if ||f|| = 1, then $|\alpha| \le 1, |\beta| \le 1, |\gamma| \le \min\{1, 2w\}$.

Theorem 3.2.([17, Theorem 2.3]) Let E be a real Banach space such that $extB_E$ is finite. Suppose that $x \in extB_E$ satisfies that there exists an $f \in E^*$ with f(x) = 1 = ||f|| and |f(y)| < 1 for every $y \in extB_E \setminus \{\pm x\}$. Then, $x \in expB_E$.

Now we are in position to describe all the exposed points of the unit ball of $\mathcal{L}_s({}^2\mathbb{R}^2_{h(w)}).$

Theorem 3.3. For 0 < w < 1, $expB_{\mathcal{L}_{s}(^{2}\mathbb{R}^{2}_{h(w)})} = extB_{\mathcal{L}_{s}(^{2}\mathbb{R}^{2}_{h(w)})}$.

Proof. We divide two cases.

Case 1: $0 < w \le \frac{1}{2}$.

Claim: $T = (0, \overline{1}, \overline{0})$ is exposed.

Let $f \in \mathcal{L}_s({}^2\mathbb{R}^2_{h(w)})^*$ be such that $\alpha = 0 = \gamma, \beta = 1$. Then f(T) = 1, |f(S)| < 1 for every $S \in extB_{\mathcal{L}_s({}^2\mathbb{R}^2_{h(w)})} \setminus \{\pm T\}$. By Theorem 3.2, T is exposed.

Claim: $T = (1, (1-w)^2, 1-w)$ is exposed.

Let $f \in \mathcal{L}_s({}^2\mathbb{R}^2_{h(w)})^*$ be such that $\alpha = \frac{1}{2} - \frac{(1-w)^2}{n}, \beta = \frac{1}{n}, \gamma = \frac{1}{2(1-w)}$ for a sufficiently large $n \in \mathbb{N}$. Then f(T) = 1, |f(S)| < 1 for every $S \in extB_{\mathcal{L}_s({}^2\mathbb{R}^2_{h(w)})} \setminus \{\pm T\}$. By Theorem 3.2, T is exposed.

Claim: $(1, 1 - w^2, 0)$ is exposed.

Let $f \in \mathcal{L}_s({}^2\mathbb{R}^2_{h(w)})^*$ be such that $\alpha = \frac{1}{2} - \frac{1-w^2}{n}, \beta = \frac{1}{n}, \gamma = 0$ for a sufficiently large $n \in \mathbb{N}$. Then f(T) = 1, |f(S)| < 1 for every $S \in extB_{\mathcal{L}_s({}^2\mathbb{R}^2_{h(w)})} \setminus \{\pm T\}$. By Theorem 3.2, T is exposed.

Claim: (0, 1-2w, 1) is exposed.

Let $f \in \mathcal{L}_s({}^2\mathbb{R}^2_{h(w)})^*$ be such that $\alpha = 0 = \beta, \gamma = 1$. Then f(T) = 1, |f(S)| < 1for every $S \in ext B_{\mathcal{L}_s(^2\mathbb{R}^2_{h(m)})} \setminus \{\pm T\}$. By Theorem 3.2, T is exposed.

Claim: $T = (1, w^2 - 1, w)$ is exposed.

First suppose that $0 < w < \frac{1}{2}$. Let $f \in \mathcal{L}_s({}^2\mathbb{R}^2_{h(w)})^*$ be such that $\alpha = 0, \beta =$ $-1, \gamma = w$. Then f(T) = 1, |f(S)| < 1 for every $S \in extB_{\mathcal{L}_{S}(2\mathbb{R}^{2}_{h(w)})} \setminus \{\pm T\}$. By Theorem 3.2, T is exposed.

If $w = \frac{1}{2}$, Then $T = (1, -\frac{3}{4}, \frac{1}{2})$. By Theorem 2.3,

$$extB_{\mathcal{L}_{s}(^{2}\mathbb{R}^{2}_{h(\frac{1}{2})})} = \{\pm(1,\frac{1}{4},\pm\frac{1}{2}),\pm(1,-\frac{3}{4},\pm\frac{1}{2}),\pm(1,\frac{3}{4},0),(0,0,\pm1)\}.$$

Let $f \in \mathcal{L}_s({}^2\mathbb{R}^2_{h(w)})^*$ be such that $\alpha = \frac{1}{4}, \beta = -1, \gamma = 0$. Then f(T) =1, |f(S)| < 1 for every $S \in ext B_{\mathcal{L}_s(2\mathbb{R}^2_{h(w)})} \setminus \{\pm T\}$. By Theorem 3.2, T is exposed.

Claim: $T = (1, -3w^2 + 2w - 1, 1 - w)$ for 0 < w < 1 is exposed.

Let $f \in \mathcal{L}_s({}^2\mathbb{R}^2_{h(w)})^*$ be such that $\alpha = \frac{1}{2} - \frac{3w^2 - 2w + 1}{n}, \beta = -\frac{1}{n}, \gamma = \frac{1}{2(1-w)}$ for a sufficiently large $n \in \mathbb{N}$. Then f(T) = 1, |f(S)| < 1 for every $S \in \mathbb{R}$ $extB_{\mathcal{L}_s(^2\mathbb{R}^2_{h(w)})} \setminus \{\pm T\}$. By Theorem 3.2, T is exposed.

Case 2: $\frac{1}{2} < w < 1$. Claim: T = (0, 1, 0) is exposed.

Let $f \in \mathcal{L}_s({}^2\mathbb{R}^2_{h(w)})^*$ be such that $\alpha = 0 = \gamma, \beta = 1$. Then f(T) = 1, |f(S)| < 1for every $S \in ext B_{\mathcal{L}_s(^2\mathbb{R}^2_{h(w)})} \setminus \{\pm T\}$. By Theorem 3.2, T is exposed.

Claim: $T = (1, (1 - w)^2, 1 - w)$ is exposed.

Let $f \in \mathcal{L}_s({}^2\mathbb{R}^2_{h(w)})^*$ be such that $\alpha = w - \frac{(1-w)^2}{n}, \beta = \frac{1}{n}, \gamma = 1$ for a sufficiently large $n \in \mathbb{N}$. Then f(T) = 1, |f(S)| < 1 for every $S \in extB_{\mathcal{L}_s({}^2\mathbb{R}^2_{h(w)})} \setminus \{\pm T\}$. By Theorem 3.2, T is exposed.

Claim: $(1, 1 - w^2, 0)$ is exposed.

Let $f \in \mathcal{L}_s({}^2\mathbb{R}^2_{h(w)})^*$ be such that $\alpha = \frac{1}{2} - \frac{1-w^2}{n}, \beta = \frac{1}{n}, \gamma = 0$ for a sufficiently large $n \in \mathbb{N}$. Then f(T) = 1, |f(S)| < 1 for every $S \in extB_{\mathcal{L}_s({}^2\mathbb{R}^2_{h(w)})} \setminus \{\pm T\}$. By

Theorem 3.2, T is exposed. Claim: $\left(\frac{2w-1}{2w^2}, \frac{1-2w}{2}, \pm \frac{1}{2w}\right)$ is exposed. Let $f \in \mathcal{L}_s({}^2\mathbb{R}^2_{h(w)})^*$ be such that $\alpha = 0 = \beta, \gamma = 2w$. Then f(T) = 1, |f(S)| < 1for every $S \in extB_{\mathcal{L}_s(2\mathbb{R}^2_{h(w)})} \setminus \{\pm T\}$. By Theorem 3.2, T is exposed.

Claim: $T = (1, w^2 - 1, 1 - w)$ is exposed.

Let $f \in \mathcal{L}_s({}^2\mathbb{R}^2_{h(w)})^*$ be such that $\alpha = w, \beta = -\frac{1}{1+w}, \gamma = 0$. Then f(T) =|1, |f(S)| < 1 for every $S \in ext B_{\mathcal{L}_s(^2\mathbb{R}^2_{h(w)})} \setminus \{\pm T\}$. By Theorem 3.2, T is exposed.

Claim: $T = \left(\frac{1}{2w}, \frac{w-2}{2}, \frac{1}{2}\right)$ is exposed.

Let $f \in \mathcal{L}_s({}^2\mathbb{R}^2_{h(w)})^*$ be such that $\alpha = 0, \beta = 1, \gamma = w$. Then f(T) = 1, |f(S)| < 01 for every $S \in extB_{\mathcal{L}_s(^2\mathbb{R}^2_{h(w)})} \setminus \{\pm T\}$. By Theorem 3.2, T is exposed.

References

- R. M. Aron, Y. S. Choi, S. G. Kim and M. Maestre, Local properties of polynomials on a Banach space, Illinois J. Math., 45(2001), 25–39.
- Y. S. Choi, H. Ki and S. G. Kim, Extreme polynomials and multilinear forms on l₁, J. Math. Anal. Appl., 228(1998), 467–482.
- [3] Y. S. Choi and S. G. Kim, The unit ball of $\mathcal{P}(^{2}l_{2}^{2})$, Arch. Math.(Basel), **71**(1998), 472–480.
- [4] Y. S. Choi and S. G. Kim, Extreme polynomials on c₀, Indian J. Pure Appl. Math., 29(1998), 983–989.
- [5] Y. S. Choi and S. G. Kim, Smooth points of the unit ball of the space $\mathcal{P}(^{2}l_{1})$, Results Math., **36**(1999), 26–33.
- [6] Y. S. Choi and S. G. Kim, Exposed points of the unit balls of the spaces $\mathcal{P}(^{2}l_{p}^{2})$ $(p = 1, 2, \infty)$, Indian J. Pure Appl. Math., **35**(2004), 37–41.
- [7] S. Dineen, Complex Analysis on Infinite Dimensional Spaces, Springer-Verlag, London (1999).
- [8] S. Dineen, Extreme integral polynomials on a complex Banach space, Math. Scand., 92(2003), 129–140.
- [9] B. C. Grecu, Geometry of 2-homogeneous polynomials on l_p spaces, 1 , J. Math. Anal. Appl.,**273**(2002), 262–282.
- [10] B. C. Grecu, G. A. Munoz-Fernandez and J. B. Seoane-Sepulveda, Unconditional constants and polynomial inequalities, J. Approx. Theory, 161(2009), 706–722.
- [11] S. G. Kim, Exposed 2-homogeneous polynomials on $\mathcal{P}(^{2}l_{p}^{2})$ $(1 \leq p \leq \infty)$, Math. Proc. Royal Irish Acad., **107A**(2007), 123–129.
- [12] S. G. Kim, The unit ball of $\mathcal{L}_s({}^2l_{\infty}^2)$, Extracta Math., **24**(2009), 17–29.
- [13] S. G. Kim, The unit ball of $\mathcal{P}(^{2}d_{*}(1,w)^{2})$, Math. Proc. Royal Irish Acad., **111A**(2011), 79–94.
- [14] S. G. Kim, The unit ball of $\mathcal{L}_s(^2d_*(1,w)^2)$, Kyungpook Math. J., **53**(2013), 295–306.
- [15] S. G. Kim, Smooth polynomials of $\mathcal{P}(^2d_*(1,w)^2)$, Math. Proc. Royal Irish Acad., **113A**(2013), 45–58.
- [16] S. G. Kim, Extreme bilinear forms of $\mathcal{L}(^{2}d_{*}(1,w)^{2})$, Kyungpook Math. J., **53**(2013), 625–638.
- [17] S. G. Kim, Exposed symmetric bilinear forms of $\mathcal{L}_s(^2d_*(1,w)^2)$, Kyungpook Math. J., **54**(2014), 341–347.
- [18] S. G. Kim, Exposed bilinear forms of $\mathcal{L}(^{2}d_{*}(1,w)^{2})$, Kyungpook Math. J., 55(2015), 119–126.
- [19] S. G. Kim, Exposed 2-homogeneous polynomials on the two-dimensional real predual of Lorentz sequence space, Mediterr. J. Math., 13(2016), 2827–2839.
- [20] S. G. Kim, The unit ball of $\mathcal{L}({}^{2}\mathbb{R}^{2}_{h(w)})$, Bull. Korean Math. Soc., **54**(2017), 417–428.
- [21] S. G. Kim and S. H. Lee, Exposed 2-homogeneous polynomials on Hilbert spaces, Proc. Amer. Math. Soc., 131(2003), 449–453.

- [22] J. Lee and K. S. Rim, Properties of symmetric matrices, J. Math. Anal. Appl., 305(2005), 219–226.
- [23] G. A. Munoz-Fernandez, S. Revesz and J. B. Seoane-Sepulveda, Geometry of homogeneous polynomials on non symmetric convex bodies, Math. Scand., 105(2009), 147–160.
- [24] G. A. Munoz-Fernandez and J. B. Seoane-Sepulveda, Geometry of Banach spaces of trinomials, J. Math. Anal. Appl., 340(2008), 1069–1087.
- [25] R. A. Ryan and B. Turett, Geometry of spaces of polynomials, J. Math. Anal. Appl., 221(1998), 698–711.