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Abstract. We classify the extreme and exposed symmetric bilinear forms of the unit ball

of the space of symmetric bilinear forms on R2 with hexagonal norms. We also show that

every extreme symmetric bilinear forms of the unit ball of the space of symmetric bilinear

forms on R2 with hexagonal norms is exposed.

1. Introduction

We write BE for the closed unit ball of a real Banach space E and the dual space
of E is denoted by E∗. x ∈ BE is called an extreme point of BE if y, z ∈ BE with
x = 1

2 (y + z) implies x = y = z. x ∈ BE is called an exposed point of BE if there
is a f ∈ E∗ so that f(x) = 1 = ∥f∥ and f(y) < 1 for every y ∈ BE \ {x}. It is easy
to see that every exposed point of BE is an extreme point. We denote by extBE

and expBE the sets of extreme and exposed points of BE , respectively. A mapping
P : E → R is a continuous 2-homogeneous polynomial if there exists a continuous
bilinear form L on the product E×E such that P (x) = L(x, x) for every x ∈ E.We
denote by L(2E) the Banach space of all continuous bilinear forms on E endowed
with the norm ∥L∥ = sup∥x∥=∥y∥=1 |L(x, y)|. Ls(

2E) denotes the subspace of L(2E)

of all continuous symmetric bilinear forms on E. P(2E) denotes the Banach space
of all continuous 2-homogeneous polynomials from E into R endowed with the norm
∥P∥ = sup∥x∥=1 |P (x)|. For more details about the theory of multilinear mappings
and polynomials on a Banach space, we refer to [7].

In 1998, Choi et al. ([2], [3]) characterized the extreme points of the unit
ball of P(2l21) and P(2l22). In 2007, Kim [11] classified the exposed 2-homogeneous
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polynomials on P(2l2p) (1 ≤ p ≤ ∞). Kim ([13], [15], [19]) classified the extreme,
exposed, smooth points of the unit ball of P(2d∗(1, w)

2), where d∗(1, w)
2 = R2

with the octagonal norm of weight w. In 2009, Kim [12] classified the extreme,
exposed, smooth points of the unit ball of Ls(

2l2∞). Kim ([14], [16], [17], [18])
classified the extreme, exposed, smooth points of the unit balls of Ls(

2d∗(1, w)
2)

and L(2d∗(1, w)
2).

We refer to ([1–6], [8–25] and references therein) for some recent work about
extremal properties of multilinear mappings and homogeneous polynomials on some
classical Banach spaces. Let 0 < w < 1 be fixed. We denote R2 with the hexagonal
norm of weight w by

R2
h(w) := {(x, y) ∈ R2 : ∥(x, y)∥h(w) := max{|y|, |x|+ (1− w)|y|} }.

Recently, Kim [20] characterized the extreme points of the unit ball of L(2R2
h(w)).

In this paper, we classify the extreme and exposed symmetric bilinear forms of the
unit ball of Ls(

2R2
h(w)). We also show that every extreme symmetric bilinear form

of the unit ball of Ls(
2R2

h(w)) is exposed.

2. The Extreme Points of the Unit Ball of Ls(2R2
h(w)

)

Let 0 < w < 1 and T ((x1, y1), (x2, y2)) = ax1x2 + by1y2 + c(x1y2 + x2y1) ∈
Ls(

2R2
h(w)) for some reals a, b, c. For simplicity we will write T ((x1, y1), (x2, y2)) =

(a, b, c).

Theorem 2.1. Let 0 < w < 1 and T ((x1, y1), (x2, y2)) := (a, b, c) ∈ Ls(
2R2

h(w)).
Then,

∥T∥ = max{|a|, |a|w + |c|, |aw2 − b|, |aw2 + b|+ 2w|c|}.

Proof. By substituting ((x1, y1), (x2, y2)) in T for ((x1,−y1), (x2,−y2)), we may

assume that c ≥ 0. Since {(±1, 0), (w, ± 1), (−w,±1)} is the set of all extreme
points of the unit ball of R2

h(w) and T is bilinear,

∥T∥ = max{|T ((±1, 0), (±1, 0))|, |T ((±1, 0), (w, ± 1))|, |T ((w, ± 1), (w, ± 1))|}.

It follows that, by symmetry of T ,

∥T∥ = max{|T ((1, 0), (1, 0))|, |T ((1, 0), (w, 1))|, |T ((1, 0), (w,−1))|,
|T ((w, 1), (w, 1))|, |T ((w,−1), (w,−1))|, |T ((w, 1), (w,−1))|}

= max{|a|, |a|w + c, |aw2 − b|, |aw2 + b|+ 2wc}. 2

Note that if ∥T∥ = 1, then |a| ≤ 1, |b| ≤ 1 and |c| ≤ 1. Let

Norm(T ) = {((x1, y1), (x2, y2)) ∈ {((1, 0), (1, 0)), ((1, 0), (w, 1)), ((1, 0), (w,−1)),

((w, 1), (w, 1)), ((w,−1), (w,−1)), ((w, 1), (w,−1))} :

|T ((x1, y1), (x2, y2))| = ∥T∥}.
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We call Norm(T ) the norming set of T .

Theorem 2.2. Let 0 < w < 1 and T ((x1, y1), (x2, y2)) = ax1x2+ by1y2+ c(x1y2+
x2y1) ∈ Ls(

2R2
h(w)) with ∥T∥ = 1. Then, T is extreme if and only if Norm(T ) has

exactly three elements.

Proof. Without loss of generality we may assume that a, c ≥ 0.

(⇐): We have 20 cases as follows:

Case 1: Norm(T ) = {((1, 0), (1, 0)), ((1, 0), (w, 1)), ((1, 0), (w,−1))}
Case 2: Norm(T ) = {((1, 0), (1, 0)), ((1, 0), (w, 1)), ((w, 1), (w, 1))}
Case 3: Norm(T ) = {((1, 0), (1, 0)), ((1, 0), (w, 1)), ((w,−1), (w,−1))}
Case 4: Norm(T ) = {((1, 0), (1, 0)), ((1, 0), (w, 1)), ((w, 1), (w,−1))}
Case 5: Norm(T ) = {((1, 0), (1, 0)), ((1, 0), (w,−1)), ((w, 1), (w, 1))}
Case 6: Norm(T ) = {((1, 0), (1, 0)), ((1, 0), (w,−1)), ((w,−1), (w,−1))}
Case 7: Norm(T ) = {((1, 0), (1, 0)), ((1, 0), (w,−1)), ((w, 1), (w,−1))}
Case 8: Norm(T ) = {((1, 0), (1, 0)), ((w, 1), (w, 1)), ((w,−1), (w,−1))}
Case 9: Norm(T ) = {((1, 0), (1, 0)), ((w, 1), (w, 1)), ((w, 1), (w,−1))}
Case 10: Norm(T ) = {((1, 0), (1, 0)), ((w,−1), (w,−1)), ((w, 1), (w,−1))}
Case 11: Norm(T ) = {((1, 0), (w, 1)), ((1, 0), (w,−1)), ((w, 1), (w, 1))}
Case 12: Norm(T ) = {((1, 0), (w, 1)), ((1, 0), (w,−1)), ((w,−1), (w,−1))}
Case 13: Norm(T ) = {((1, 0), (w, 1)), ((1, 0), (w,−1)), ((w, 1), (w,−1))}
Case 14: Norm(T ) = {((1, 0), (w, 1)), ((w, 1), (w, 1)), ((w,−1), (w,−1))}
Case 15: Norm(T ) = {((1, 0), (w, 1)), ((w, 1), (w, 1)), ((w, 1), (w,−1))}
Case 16: Norm(T ) = {((1, 0), (w, 1)), ((w,−1), (w,−1)), ((w, 1), (w,−1))}
Case 17: Norm(T ) = {((1, 0), (w,−1)), ((w, 1), (w, 1)), ((w,−1), (w,−1))}
Case 18: Norm(T ) = {((1, 0), (w,−1)), ((w, 1), (w, 1)), ((w, 1), (w,−1))}
Case 19: Norm(T ) = {((1, 0), (w,−1)), ((w,−1), (w,−1)), ((w, 1), (w,−1))}
Case 20: Norm(T ) = {((w, 1), (w, 1)), ((w,−1), (w,−1)), ((w, 1), (w,−1))}.

We will consider each case.

Case 1: Norm(T ) = {((1, 0), (1, 0)), ((1, 0), (w, 1)), ((1, 0), (w,−1))}
Note that T does not exist in case 1.

Case 2: Norm(T ) = {((1, 0), (1, 0)), ((1, 0), (w, 1)), ((w, 1), (w, 1))}
Then T = (1, (1−w)2, 1−w) for all 0 < w < 1. Note that T = (1, (1−w)2, 1−w)

is extreme for all 0 < w < 1. Indeed, let T1 = (1 + ϵ, (1− w)2 + δ, 1− w + γ), T2 =
(1 − ϵ, (1 − w)2 − δ, 1 − w − γ) be such that ∥T1∥ = 1 = ∥T2∥ for some ϵ, δ, γ ∈ R.
Since |Ti((1, 0), (1, 0))| ≤ 1, |Ti((1, 0), (w, 1))| ≤ 1, |Ti((w, 1), (w, 1))| ≤ 1, we have
0 = ϵ = δ = γ.

Case 3: Norm(T ) = {((1, 0), (1, 0)), ((1, 0), (w, 1)), ((w,−1), (w,−1))}
Then T = (1,−3w2 + 2w − 1, 1 − w) for all 0 < w ≤ 1

2 . Note that T =
(1,−3w2 + 2w − 1, 1 − w) is extreme for all 0 < w ≤ 1

2 . Indeed, let T1 = (1 +
ϵ,−3w2 + 2w − 1 + δ, 1 − w + γ), T2 = (1 − ϵ,−3w2 + 2w − 1 − δ, 1 − w − γ)
be such that ∥T1∥ = 1 = ∥T2∥ for some ϵ, δ, γ ∈ R. Since |Ti((1, 0), (1, 0))| ≤
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1, |Ti((1, 0), (w, 1))| ≤ 1, |Ti((w,−1), (w,−1))| ≤ 1, we have

ϵ = 0

wϵ+ γ = 0

w2ϵ+ δ − 2wγ = 0,

which show that 0 = ϵ = δ = γ.
Case 4: Norm(T ) = {((1, 0), (1, 0)), ((1, 0), (w, 1)), ((w, 1), (w,−1))}
Then T = (1, w2 − 1, 1 − w) for all w ≥ 1

2 . Note that T = (1, w2 − 1, 1 − w)
is extreme for all w ≥ 1

2 . Indeed, let T1 = (1 + ϵ, w2 − 1 + δ, 1 − w + γ), T2 =
(1 − ϵ, w2 − 1 − δ, 1 − w − γ) be such that ∥T1∥ = 1 = ∥T2∥ for some ϵ, δ, γ ∈ R.
Since |Ti((1, 0), (1, 0))| ≤ 1, |Ti((1, 0), (w, 1))| ≤ 1, |Ti((w, 1), (w,−1))| ≤ 1, we have

ϵ = 0

wϵ+ γ = 0

w2ϵ− δ = 0,

which show that 0 = ϵ = δ = γ.
Case 5: Norm(T ) = {((1, 0), (1, 0)), ((1, 0), (w,−1)), ((w, 1), (w, 1))}
Note that T does not exist in case 5.
Case 6: Norm(T ) = {((1, 0), (1, 0)), ((1, 0), (w,−1)), ((w,−1), (w,−1))}
Note that T does not exist in case 6.
Case 7: Norm(T ) = {((1, 0), (1, 0)), ((1, 0), (w,−1)), ((w, 1), (w,−1))}
Note that T does not exist in case 7.
Case 8: Norm(T ) = {((1, 0), (1, 0)), ((w, 1), (w, 1)), ((w,−1), (w,−1))}
Then T = (1, 1−w2, 0) for all 0 < w < 1. Note that T = (1, 1−w2, 0) is extreme

for all 0 < w < 1. Indeed, let T1 = (1+ ϵ, 1−w2 + δ, γ), T2 = (1− ϵ, 1−w2 − δ,−γ)
be such that ∥T1∥ = 1 = ∥T2∥ for some ϵ, δ, γ ∈ R. Since |Ti((1, 0), (1, 0))| ≤
1, |Ti((w, 1), (w, 1))| ≤ 1, |Ti((w,−1), (w,−1))| ≤ 1, we have

ϵ = 0

w2ϵ+ δ + 2wγ = 0

w2ϵ+ δ − 2wγ = 0,

which show that 0 = ϵ = δ = γ.
Case 9: Norm(T ) = {((1, 0), (1, 0)), ((w, 1), (w, 1)), ((w, 1), (w,−1))}
Note that T does not exist in case 9.
Case 10: Norm(T ) = {((1, 0), (1, 0)), ((w,−1), (w,−1)), ((w, 1), (w,−1))}
Then T = (1, w2 − 1, w) for all 0 < w ≤ 1

2 . Note that T = (1, w2 − 1, w)
is extreme for all 0 < w ≤ 1

2 . Indeed, let T1 = (1 + ϵ, w2 − 1 + δ, w + γ), T2 =
(1− ϵ, w2 − 1− δ, w − γ) be such that ∥T1∥ = 1 = ∥T2∥ for some ϵ, δ, γ ∈ R. Since
|Ti((1, 0), (1, 0))| ≤ 1, |Ti((w,−1), (w,−1))| ≤ 1, |Ti((w, 1), (w,−1))| ≤ 1, we have

ϵ = 0

w2ϵ+ δ − 2wγ = 0

w2ϵ− δ = 0,
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which show that 0 = ϵ = δ = γ.
Case 11: Norm(T ) = {((1, 0), (w, 1)), ((1, 0), (w,−1)), ((w, 1), (w, 1))}
Then T = (0, 1−2w, 1) for all 0 < w ≤ 1

2 . Note that T = (0, 1−2w, 1) is extreme
for all 0 < w ≤ 1

2 . Indeed, let T1 = (ϵ, 1− 2w+ δ, 1+ γ), T2 = (−ϵ, 1− 2w− δ, 1− γ)
be such that ∥T1∥ = 1 = ∥T2∥ for some ϵ, δ, γ ∈ R. Since |Ti((1, 0), (w, 1))| ≤
1, |Ti((1, 0), (w,−1))| ≤ 1, |Ti((w, 1), (w, 1))| ≤ 1, we have

wϵ+ γ = 0

wϵ− γ = 0

w2ϵ+ δ + 2wγ = 0,

which show that 0 = ϵ = δ = γ.
Case 12: Norm(T ) = {((1, 0), (w, 1)), ((1, 0), (w,−1)), ((w,−1), (w,−1))}
Note that T does not exist in case 12.
Case 13: Norm(T ) = {((1, 0), (w, 1)), ((1, 0), (w,−1)), ((w, 1), (w,−1))}
Note that T does not exist in case 13.
Case 14: Norm(T ) = {((1, 0), (w, 1)), ((w, 1), (w, 1)), ((w,−1), (w,−1))}
Then T = ( 2w−1

2w2 ,
1−2w

2 , 1
2w ) for all w ≥ 1

2 . Note that T = ( 2w−1
2w2 ,

1−2w
2 , 1

2w )
is extreme for all w ≥ 1

2 . Indeed, let T1 = ( 2w−1
2w2 + ϵ, 1−2w

2 + δ, 1
2w + γ), T2 =

( 2w−1
2w2 − ϵ, 1−2w

2 − δ, 1
2w − γ) be such that ∥T1∥ = 1 = ∥T2∥ for some ϵ, δ, γ ∈ R.

Since |Ti((1, 0), (w, 1))| ≤ 1, |Ti((w, 1), (w, 1))| ≤ 1, |Ti((w,−1), (w,−1))| ≤ 1, we
have

ϵ+ γ = 0

w2ϵ+ δ + 2wγ = 0

w2ϵ+ δ − 2wγ = 0,

which show that 0 = ϵ = δ = γ.
Case 15: Norm(T ) = {((1, 0), (w, 1)), ((w, 1), (w, 1)), ((w, 1), (w,−1))}
Note that T does not exist in case 15.
Case 16: Norm(T ) = {((1, 0), (w, 1)), ((w,−1), (w,−1)), ((w, 1), (w,−1))}
Then T = ( 1

2w ,
w−2
2 , 12 ) for all w ≥ 1

2 . Note that T = ( 1
2w ,

w−2
2 , 12 ) is extreme

for all w ≥ 1
2 . Indeed, let T1 = ( 1

2w + ϵ, w−2
2 + δ, 12 +γ), T2 = ( 1

2w − ϵ, w−2
2 − δ, 12 −γ)

be such that ∥T1∥ = 1 = ∥T2∥ for some ϵ, δ, γ ∈ R. Since |Ti((1, 0), (w, 1))| ≤
1, |Ti((w,−1), (w,−1))| ≤ 1, |Ti((w, 1), (w,−1))| ≤ 1, we have

wϵ+ γ = 0

w2ϵ+ δ − 2wγ = 0

w2ϵ− δ = 0,

which show that 0 = ϵ = δ = γ.
Case 17: Norm(T ) = {((1, 0), (w,−1)), ((w, 1), (w, 1)), ((w,−1), (w,−1))}
Note that T does not exist in case 17.
Case 18: Norm(T ) = {((1, 0), (w,−1)), ((w, 1), (w, 1)), ((w, 1), (w,−1))}
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Note that T does not exist in case 18.
Case 19: Norm(T ) = {((1, 0), (w,−1)), ((w,−1), (w,−1)), ((w, 1), (w,−1))}
Note that T does not exist in case 19.
Case 20: Norm(T ) = {((w, 1), (w, 1)), ((w,−1), (w,−1)), ((w, 1), (w,−1))}.
Note that T does not exist in case 20.
(⇒) : By the argument of (⇐), it is enough to show that if Norm(T ) has at

most two elements, then T is not extreme. For an example, let

Norm(T ) = {((1, 0), (1, 0)), ((1, 0), (w, 1))}.

We will show that T is not extreme. Notice that

|T ((1, 0), (1, 0))| = 1 = |T ((1, 0), (w, 1))|, |T ((w, 1), (w, 1))| < 1, |T ((w, 1), (w,−1))| < 1.

Hence, a = 1, c = 1 − w, |w2 − b| < 1, |w2 + b| + 2w(1 − w) < 1. Let δ > 0 such
that |w2 − b| + δ < 1, |w2 + b| + 2w(1 − w) + δ < 1. Let T1 = (1, b + δ, 1 − w) and
T2 = (1, b − δ, 1 − w). By Theorem 2.1, ∥Ti∥ = 1 for i = 1, 2. Since Ti ̸= T, T =
1
2 (T1 + T2), T is not extreme. For the other cases, we may show that if Norm(T )
has at most two elements, then T is not extreme using Theorem 2.1. Hence, we will
omit the proofs. Therefore, we complete the proof. 2

Now we are in position to describe all the extreme points of the unit ball of
Ls(

2R2
h(w)).

Theorem 2.3. (a) Let 0 < w ≤ 1
2 . Then,

extBLs(2R2
h(w)

) = {±(0, 1, 0),±(1, (1− w)2,±(1− w)),±(1, 1− w2, 0),

±(1, w2 − 1,±w),±(0, 1− 2w,±1),

±(1,−3w2 + 2w − 1,±(1− w))}.

(b) Let 1
2 < w < 1. Then,

extBLs(2R2
h(w)

) = {±(0, 1, 0),±(1, (1− w)2,±(1− w)),±(1, 1− w2, 0),

±(1, w2 − 1,±(1− w)),±(
1

2w
,
w − 2

2
,±1

2
),

±(
2w − 1

2w2
,
1− 2w

2
,± 1

2w
)}.

Proof. It follows from the proof of Theorem 2.2. 2

3. The Exposed Points of the Unit Ball of Ls(
2R2

h(w))

Theorem 3.1. Let 0 < w < 1 and f ∈ Ls(
2R2

h(w))
∗ and α = f(x1x2), β =

f(y1y2), γ = f(x1y2 + x2y1).
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(a) Let 0 < w ≤ 1
2 . Then,

∥f∥ = max{|β|, |α+ (1− w)2β|+ (1− w)|γ|, |α+ (1− w2)β|,
|α− (1− w2)β|+ w|γ|, |α− (3w2 − 2w + 1)β|+ (1− w)|γ|,
(1− 2w)|β|+ |γ|}.

(b) Let 1
2 < w < 1. Then,

∥f∥ = max{|β|, |α+ (1− w)2β|+ (1− w)|γ|, |α+ (1− w2)β|,

|α− (1− w2)β|+ (1− w)|γ|, |( 1

2w
)α− (

2− w

2
)β|+ 1

2
|γ|,

|(2w − 1

2w2
)α+ (

1− 2w

2
)β|+ 1

2w
|γ|}.

Proof. It follows from Theorem 2.3 and the fact that

∥f∥ = max
T∈extB

Ls(2R2
h(w)

)

|f(T )|.

2

Note that if ∥f∥ = 1, then |α| ≤ 1, |β| ≤ 1, |γ| ≤ min{1, 2w}.

Theorem 3.2.([17, Theorem 2.3]) Let E be a real Banach space such that extBE

is finite. Suppose that x ∈ extBE satisfies that there exists an f ∈ E∗ with f(x) =
1 = ∥f∥ and |f(y)| < 1 for every y ∈ extBE\{±x}. Then, x ∈ expBE.

Now we are in position to describe all the exposed points of the unit ball of
Ls(

2R2
h(w)).

Theorem 3.3. For 0 < w < 1, expBLs(2R2
h(w)

) = extBLs(2R2
h(w)

).

Proof. We divide two cases.
Case 1: 0 < w ≤ 1

2 .
Claim: T = (0, 1, 0) is exposed.
Let f ∈ Ls(

2R2
h(w))

∗ be such that α = 0 = γ, β = 1. Then f(T ) = 1, |f(S)| < 1

for every S ∈ extBLs(2R2
h(w)

)\{±T}. By Theorem 3.2, T is exposed.

Claim: T = (1, (1− w)2, 1− w) is exposed.

Let f ∈ Ls(
2R2

h(w))
∗ be such that α = 1

2 −
(1−w)2

n , β = 1
n , γ = 1

2(1−w) for a suffi-

ciently large n ∈ N. Then f(T ) = 1, |f(S)| < 1 for every S ∈ extBLs(2R2
h(w)

)\{±T}.
By Theorem 3.2, T is exposed.

Claim: (1, 1− w2, 0) is exposed.

Let f ∈ Ls(
2R2

h(w))
∗ be such that α = 1

2 − 1−w2

n , β = 1
n , γ = 0 for a sufficiently

large n ∈ N. Then f(T ) = 1, |f(S)| < 1 for every S ∈ extBLs(2R2
h(w)

)\{±T}. By
Theorem 3.2, T is exposed.
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Claim: (0, 1− 2w, 1) is exposed.
Let f ∈ Ls(

2R2
h(w))

∗ be such that α = 0 = β, γ = 1. Then f(T ) = 1, |f(S)| < 1

for every S ∈ extBLs(2R2
h(w)

)\{±T}. By Theorem 3.2, T is exposed.

Claim: T = (1, w2 − 1, w) is exposed.
First suppose that 0 < w < 1

2 . Let f ∈ Ls(
2R2

h(w))
∗ be such that α = 0, β =

−1, γ = w. Then f(T ) = 1, |f(S)| < 1 for every S ∈ extBLs(2R2
h(w)

)\{±T}. By
Theorem 3.2, T is exposed.

If w = 1
2 , Then T = (1,−3

4 ,
1
2 ). By Theorem 2.3,

extBLs(2R2

h( 1
2
)
) = {±(1,

1

4
,±1

2
),±(1,−3

4
,±1

2
),±(1,

3

4
, 0), (0, 0,±1)}.

Let f ∈ Ls(
2R2

h(w))
∗ be such that α = 1

4 , β = −1, γ = 0. Then f(T ) =

1, |f(S)| < 1 for every S ∈ extBLs(2R2
h(w)

)\{±T}. By Theorem 3.2, T is exposed.

Claim: T = (1,−3w2 + 2w − 1, 1− w) for 0 < w < 1 is exposed.

Let f ∈ Ls(
2R2

h(w))
∗ be such that α = 1

2 − 3w2−2w+1
n , β = − 1

n , γ = 1
2(1−w)

for a sufficiently large n ∈ N. Then f(T ) = 1, |f(S)| < 1 for every S ∈
extBLs(2R2

h(w)
)\{±T}. By Theorem 3.2, T is exposed.

Case 2: 1
2 < w < 1.

Claim: T = (0, 1, 0) is exposed.
Let f ∈ Ls(

2R2
h(w))

∗ be such that α = 0 = γ, β = 1. Then f(T ) = 1, |f(S)| < 1

for every S ∈ extBLs(2R2
h(w)

)\{±T}. By Theorem 3.2, T is exposed.

Claim: T = (1, (1− w)2, 1− w) is exposed.

Let f ∈ Ls(
2R2

h(w))
∗ be such that α = w− (1−w)2

n , β = 1
n , γ = 1 for a sufficiently

large n ∈ N. Then f(T ) = 1, |f(S)| < 1 for every S ∈ extBLs(2R2
h(w)

)\{±T}. By
Theorem 3.2, T is exposed.

Claim: (1, 1− w2, 0) is exposed.

Let f ∈ Ls(
2R2

h(w))
∗ be such that α = 1

2 − 1−w2

n , β = 1
n , γ = 0 for a sufficiently

large n ∈ N. Then f(T ) = 1, |f(S)| < 1 for every S ∈ extBLs(2R2
h(w)

)\{±T}. By
Theorem 3.2, T is exposed.

Claim: ( 2w−1
2w2 ,

1−2w
2 ,± 1

2w ) is exposed.
Let f ∈ Ls(

2R2
h(w))

∗ be such that α = 0 = β, γ = 2w. Then f(T ) = 1, |f(S)| < 1

for every S ∈ extBLs(2R2
h(w)

)\{±T}. By Theorem 3.2, T is exposed.

Claim: T = (1, w2 − 1, 1− w) is exposed.
Let f ∈ Ls(

2R2
h(w))

∗ be such that α = w, β = − 1
1+w , γ = 0. Then f(T ) =

1, |f(S)| < 1 for every S ∈ extBLs(2R2
h(w)

)\{±T}. By Theorem 3.2, T is exposed.

Claim: T = ( 1
2w ,

w−2
2 , 12 ) is exposed.

Let f ∈ Ls(
2R2

h(w))
∗ be such that α = 0, β = 1, γ = w. Then f(T ) = 1, |f(S)| <

1 for every S ∈ extBLs(2R2
h(w)

)\{±T}. By Theorem 3.2, T is exposed. 2



Extremal Problems for Ls(2R2
h(w)

) 231

References

[1] R. M. Aron, Y. S. Choi, S. G. Kim and M. Maestre, Local properties of polynomials
on a Banach space, Illinois J. Math., 45(2001), 25–39.

[2] Y. S. Choi, H. Ki and S. G. Kim, Extreme polynomials and multilinear forms on l1,
J. Math. Anal. Appl., 228(1998), 467–482.

[3] Y. S. Choi and S. G. Kim, The unit ball of P(2l22), Arch. Math.(Basel), 71(1998),
472–480.

[4] Y. S. Choi and S. G. Kim, Extreme polynomials on c0, Indian J. Pure Appl. Math.,
29(1998), 983–989.

[5] Y. S. Choi and S. G. Kim, Smooth points of the unit ball of the space P(2l1), Results
Math., 36(1999), 26–33.

[6] Y. S. Choi and S. G. Kim, Exposed points of the unit balls of the spaces P(2l2p) (p =
1, 2,∞), Indian J. Pure Appl. Math., 35(2004), 37–41.

[7] S. Dineen, Complex Analysis on Infinite Dimensional Spaces, Springer-Verlag, London
(1999).

[8] S. Dineen, Extreme integral polynomials on a complex Banach space, Math. Scand.,
92(2003), 129–140.

[9] B. C. Grecu, Geometry of 2-homogeneous polynomials on lp spaces, 1 < p < ∞, J.
Math. Anal. Appl., 273(2002), 262–282 .

[10] B. C. Grecu, G. A. Munoz-Fernandez and J. B. Seoane-Sepulveda, Unconditional
constants and polynomial inequalities, J. Approx. Theory, 161(2009), 706–722.

[11] S. G. Kim, Exposed 2-homogeneous polynomials on P(2l2p) (1 ≤ p ≤ ∞), Math. Proc.
Royal Irish Acad., 107A(2007), 123–129.

[12] S. G. Kim, The unit ball of Ls(
2l2∞), Extracta Math., 24(2009), 17–29.

[13] S. G. Kim, The unit ball of P(2d∗(1, w)2), Math. Proc. Royal Irish Acad., 111A(2011),
79–94.

[14] S. G. Kim, The unit ball of Ls(
2d∗(1, w)2), Kyungpook Math. J., 53(2013), 295–306.

[15] S. G. Kim, Smooth polynomials of P(2d∗(1, w)2), Math. Proc. Royal Irish Acad.,
113A(2013), 45–58.

[16] S. G. Kim, Extreme bilinear forms of L(2d∗(1, w)2), Kyungpook Math. J., 53(2013),
625–638.

[17] S. G. Kim, Exposed symmetric bilinear forms of Ls(
2d∗(1, w)2), Kyungpook Math.

J., 54(2014), 341–347.

[18] S. G. Kim, Exposed bilinear forms of L(2d∗(1, w)2), Kyungpook Math. J., 55(2015),
119–126.

[19] S. G. Kim, Exposed 2-homogeneous polynomials on the two-dimensional real predual
of Lorentz sequence space, Mediterr. J. Math., 13(2016), 2827–2839.

[20] S. G. Kim, The unit ball of L(2R2
h(w)), Bull. Korean Math. Soc., 54(2017), 417–428.

[21] S. G. Kim and S. H. Lee, Exposed 2-homogeneous polynomials on Hilbert spaces, Proc.
Amer. Math. Soc., 131(2003), 449–453.



232 Sung Guen Kim

[22] J. Lee and K. S. Rim, Properties of symmetric matrices, J. Math. Anal. Appl.,
305(2005), 219–226.

[23] G. A. Munoz-Fernandez, S. Revesz and J. B. Seoane-Sepulveda, Geometry of ho-
mogeneous polynomials on non symmetric convex bodies, Math. Scand., 105(2009),
147–160.

[24] G. A. Munoz-Fernandez and J. B. Seoane-Sepulveda, Geometry of Banach spaces of
trinomials, J. Math. Anal. Appl., 340(2008), 1069–1087.

[25] R. A. Ryan and B. Turett, Geometry of spaces of polynomials, J. Math. Anal. Appl.,
221(1998), 698–711.


