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Abstract. We classify the extreme, exposed and smooth bilinear forms of the unit ball

of the space of bilinear forms on l2∞.

1. Introduction

We write BE for the closed unit ball of a real Banach space E and the dual
space of E is denoted by E∗. An element x ∈ BE is called an extreme point of
BE if y, z ∈ BE with x = 1

2 (y + z) implies x = y = z. An element x ∈ BE is
called an exposed point of BE if there is a f ∈ E∗ so that f(x) = 1 = ‖f‖ and
f(y) < 1 for every y ∈ BE \ {x}. An element x ∈ BE is called a smooth point of
BE if there is a unique f ∈ E∗ so that f(x) = 1 = ‖f‖. It is easy to see that every
exposed point of BE is an extreme point. We denote by extBE , expBE and smBE

the sets of extreme, exposed and smooth points of BE , respectively. A mapping
P : E → R is a continuous 2-homogeneous polynomial if there exists a continuous
bilinear form L on the product E×E such that P (x) = L(x, x) for every x ∈ E. We
denote by L(2E) the Banach space of all continuous bilinear forms on E endowed
with the norm ‖L‖ = sup‖x‖=‖y‖=1 |L(x, y)|. P(2E) denotes the Banach space of
all continuous 2-homogeneous polynomials from E into R endowed with the norm
‖P‖ = sup‖x‖=1 |P (x)|. For more details about the theory of multilinear mappings
and polynomials on a Banach space, we refer to [8].

In 1998, Choi et al. ([3], [4]) characterized the extreme points of the unit ball
of P(2l21) and P(2l22). In 2007, the author [11] classified the exposed 2-homogeneous
polynomials on P(2l2p) (1 ≤ p ≤ ∞). Recently, the author ([14], [16], [20]) classified
the extreme, exposed and smooth points of the unit ball of P(2d∗(1, w)2), where
d∗(1, w)2 = R2 with the octagonal norm of weight w.
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In 2009, the author [13] classified the extreme, exposed and smooth points of
the unit ball of Ls(

2l2∞). Recently, the author ([15], [17]–[19]) classified the extreme,
exposed and smooth points of the unit balls of Ls(

2d∗(1, w)2) and L(2d∗(1, w)2).
We refer to ([1]–[7], [9]–[25] and references therein) for some recent work about

extremal properties of multilinear mappings and homogeneous polynomials on some
classical Banach spaces. In this paper, we classify the extreme, exposed and smooth
bilinear forms of the unit ball of L(2l2∞).

2. The extreme points of the unit ball of L(2l2∞)

Let T ((x1, y1), (x2, y2)) = ax1x2 + by1y2 + cx1y2 + dx2y1 ∈ L(2l2∞) for some
real numbers a, b, c, d. For simplicity we will write T ((x1, y1), (x2, y2)) = (a, b, c, d).
Let

T1((x1, y1), (x2, y2)) := T ((y1, x1), (y2, x2)) = (b, a, d, c),

T2((x1, y1), (x2, y2)) := T ((x1, y1), (x2,−y2)) = (a,−b,−c, d),

T3((x1, y1), (x2, y2)) := T ((x1, y1), (y2, x2)) = (c, d, a, b)

T4((x1, y1), (x2, y2)) := T ((y2, x2), (x1, y1)) = (c, d, b, a).

Then ‖Ti‖ = ‖T‖ (i = 1, . . . , 4).

Theorem 2.1. Let T ((x1, y1), (x2, y2)) = (a, b, c, d) ∈ L(2l2∞). Then,

‖T‖ = max{|a+ b|+ |c+ d|, |a− b|+ |c− d|}.

Proof. Since {(1, 1), (1,−1), (−1, 1), (−1,−1)} is the set of all extreme points of

the unit ball of l2∞ and T is bilinear,

‖T‖ = max{|T ((1, 1), (1, 1))|, |T ((1,−1), (−1, 1))|,
|T ((1, 1), (1,−1))|, |T ((−1, 1), (1, 1))|}

= max{|a+ b|+ |c+ d|, |a− b|+ |c− d|}.

2

Note that if ‖T‖ = 1, then |a| ≤ 1, |b| ≤ 1, |c| ≤ 1 and |d| ≤ 1.

Theorem 2.2. Let T ((x1, y1), (x2, y2)) = (a, b, c, d) ∈ L(2l2∞). Then, the follow-
ings are equivalent:

(1) T is extreme;

(2) (b, a, d, c) is extreme;

(3) (a,−b,−c, d) is extreme;

(4) (c, d, a, b) is extreme;

(5) (c, d, b, a) is extreme.
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Proof. It follows from Theorem 2.1 and the above remark of Theorem 2.1. 2

Let

Norm(T ) = {((x1, y1), (x2, y2)) ∈ {((1, 1), (1, 1)), ((1,−1), (1,−1)), ((1, 1), (1,−1)),

((1,−1), (1, 1))} : |T ((x1, y1), (x2, y2))| = ‖T‖}.

We call Norm(T ) the norming set of T .

Theorem 2.3. Let T ∈ L(2l2∞) with ‖T‖ = 1. Then, T ∈ extBL(2l2∞) if and only if

Norm(T ) = {((1, 1), (1, 1)), ((1,−1), (1,−1)), ((1, 1), (1,−1)), ((1,−1), (1, 1))}.

Proof. Suppose that T ∈ L(2l2∞) with ‖T‖ = 1. By Theorem 2.2, we may assume
that a ≥ |b| and c ≥ |d|.

(⇐): Obviously,

1 = |T ((1, 1), (1, 1))| = |T ((1,−1), (1,−1))| = |T ((1, 1), (1,−1))| = |T ((1,−1), (1, 1))|.

Hence, 1 = |a + b + c + d| = |a + b − c − d| = |a − b − c + d| = |a − b + c − d|, so
1 = a+ b+ c+ d = a− b+ c− d, so c = 1− a, d = −b. Since 1 = |a+ b− c− d| =
|a− b− c+ d|, 1 = |(2a− 1) + 2b| = |(2a− 1)− 2b|. Hence, (2a− 1)2b = 0, so a = 1

2
or b = 0. If a = 1

2 , then b = ± 1
2 and T = ( 1

2 ,
1
2 ,

1
2 ,−

1
2 ) or T = ( 1

2 ,−
1
2 ,

1
2 ,

1
2 ). Note

that ( 1
2 ,

1
2 ,

1
2 ,−

1
2 ) and T = ( 1

2 ,−
1
2 ,

1
2 ,

1
2 ) are extreme. If b = 0, then a = 0 or a = 1,

so T = (0, 0, 1, 0) or T = (1, 0, 0, 0). Note that (0, 0, 1, 0) and (1, 0, 0, 0) are extreme.
By Theorem 2.2, (− 1

2 ,
1
2 ,

1
2 ,

1
2 ), ( 1

2 ,
1
2 ,−

1
2 ,

1
2 ), (0, 1, 0, 0), (0, 0, 0, 1) are extreme.

(⇒): Suppose that T ∈ extBL(2l2∞) and the necessary condition is not true.
Then

Norm(T ) ⊂ {((1, 1), (1, 1)), ((1,−1), (1,−1)), ((1, 1), (1,−1))} or

Norm(T ) ⊂ {((1, 1), (1, 1)), ((1,−1), (1,−1)), ((1,−1), (1, 1))} or

Norm(T ) ⊂ {((1, 1), (1, 1)), ((1, 1), (1,−1)), ((1,−1), (1, 1))} or

Norm(T ) ⊂ {((1,−1), (1,−1)), ((1, 1), (1,−1)), ((1,−1), (1, 1))}.

Without loss of generality we may assume that

Norm(T ) = {((1, 1), (1, 1)), ((1,−1), (1,−1)), ((1, 1), (1,−1))} or

Norm(T ) = {((1, 1), (1, 1)), ((1,−1), (1,−1)), ((1,−1), (1, 1))} or

Norm(T ) = {((1, 1), (1, 1)), ((1, 1), (1,−1)), ((1,−1), (1, 1))} or

Norm(T ) = {((1,−1), (1,−1)), ((1, 1), (1,−1)), ((1,−1), (1, 1))}.

Case 1: Norm(T ) = {((1, 1), (1, 1)), ((1,−1), (1,−1)), ((1, 1), (1,−1))}
Let T1 = (a − 1

n , b + 1
n , c −

1
n , d + 1

n ) and T2 = (a + 1
n , b −

1
n , c + 1

n , d −
1
n ) for

a sufficiently large n ∈ N so that ‖Ti‖ = 1 for i = 1, 2. Therefore, T is not extreme,
which is a contradiction.
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Case 2: Norm(T ) = {((1, 1), (1, 1)), ((1,−1), (1,−1)), ((1,−1), (1, 1))}
Let T1 = (a + 1

n , b −
1
n , c −

1
n , d + 1

n ) and T2 = (a − 1
n , b + 1

n , c + 1
n , d −

1
n ) for

a sufficiently large n ∈ N so that ‖Ti‖ = 1 for i = 1, 2. Therefore, T is not extreme,
which is a contradiction.

Case 3: Norm(T ) = {((1, 1), (1, 1)), ((1, 1), (1,−1)), ((1,−1), (1, 1))}
Let T1 = (a − 1

n , b −
1
n , c + 1

n , d + 1
n ) and T2 = (a + 1

n , b + 1
n , c −

1
n , d −

1
n ) for

a sufficiently large n ∈ N so that ‖Ti‖ = 1 for i = 1, 2. Therefore, T is not extreme,
which is a contradiction.

Case 4: Norm(T ) = {((1,−1), (1,−1)), ((1, 1), (1,−1)), ((1,−1), (1, 1))}
Let T1 = (a + 1

n , b + 1
n , c + 1

n , d + 1
n ) and T2 = (a − 1

n , b −
1
n , c −

1
n , d −

1
n ) for

a sufficiently large n ∈ N so that ‖Ti‖ = 1 for i = 1, 2. Therefore, T is not extreme,
which is a contradiction. 2

Theorem 2.4.

extBL(2l2∞) = {±(1, 0, 0, 0),±(0, 1, 0, 0),±(0, 0, 1, 0),±(0, 0, 0, 0, 1),

±1

2
(−1, 1, 1, 1),±1

2
(1,−1, 1, 1),±1

2
(1, 1,−1, 1),±1

2
(1, 1, 1,−1)}.

Proof. It follows from the proof of Theorem 2.3. 2

3. The exposed points of the unit ball of L(2l2∞)

Theorem 3.1. Let f ∈ L(2l2∞)∗ and α = f(x1x2), β = f(y1y2), δ =
f(x1y2), γ = f(x2y1). Then,

‖f‖ = max{|α|, |β|, |δ|, |γ|, 1

2
|α− β + δ + γ|, 1

2
|α+ β − δ + γ|, 1

2
|α+ β + δ − γ|}.

Proof. It follows from Theorem 2.3 and the fact that

‖f‖ = max
T∈extBL(2l2∞)

|f(T )|.

2

Note that if ‖f‖ = 1, then |α| ≤ 1, |β| ≤ 1, |δ| ≤ 1, |γ| ≤ 1.

Theorem 3.2 ([18, Theorem 2.3]). Let E be a real Banach space such that extBE

is finite. Suppose that x ∈ extBE satisfies that there exists an f ∈ E∗ with f(x) =
1 = ‖f‖ and |f(y)| < 1 for every y ∈ extBE\{±x}. Then, x ∈ expBE.

Theorem 3.3. Let T ((x1, y1), (x2, y2)) = (a, b, c, d) ∈ L(2l2∞). Then, the follow-
ings are equivalent:

(1) T is exposed;

(2) (b, a, d, c) is exposed;
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(3) (a,−b,−c, d) is exposed;

(4) (c, d, a, b) is exposed;

(5) (c, d, b, a) is exposed.

Proof. It follows from Theorem 2.1 and the above remark of Theorem 2.1. 2

Now we are in position to describe all the exposed points of the unit ball of
L(2l2∞).

Theorem 3.4. expBL(2l2∞) = extBL(2l2∞).

Proof. It is enough to show that extBL(2l2∞) ⊂ expBL(2l2∞).
Claim: T = (1, 0, 0, 0) is exposed.
Let f ∈ L(2l2∞)∗ be such that α = 1, 0 = β = δ = γ. Then f(T ) = 1, |f(S)| < 1

for every S ∈ extBL(2l2∞)\{±T}. By Theorem 3.2, T is exposed. By Theorem 3.3,
(0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1) are exposed.

Claim: T = 1
2 (−1, 1, 1, 1) is exposed.

Let f ∈ L(2l2∞)∗ be such that α = 1, 0 = β, δ = γ = 1
2 . Then f(T ) = 1, |f(S)| <

1 for every S ∈ extBL(2l2∞)\{±T}. By Theorem 3.2, T is exposed. By Theorem 3.3,
1
2 (1,−1, 1, 1), 12 (1, 1,−1, 1), 12 (1, 1, 1,−1) are exposed. 2

4. The smooth points of the unit ball of L(2l2∞)

Theorem 4.1. Let T ((x1, y1), (x2, y2)) = (a, b, c, d) ∈ L(2l2∞). Then, the follow-
ings are equivalent:

(1) T is smooth;

(2) (b, a, d, c) is smooth;

(3) (a,−b,−c, d) is smooth;

(4) (c, d, a, b) is smooth;

(5) (c, d, b, a) is smooth.

Proof. It follows from Theorem 2.1 and the above remark of Theorem 2.1. 2

Theorem 4.2. Let T ((x1, y1), (x2, y2)) = (a, b, c, d) ∈ L(2l2∞). Then, T ∈
smBL(2l2∞) if and only if (0 < |a+ b| < 1, |a+ b|+ |c+ d| = 1, |a− b|+ |c− d| < 1)
or (0 < |a− b| < 1, |a− b|+ |c− d| = 1, |a+ b|+ |c+ d| < 1).

Proof. By Theorem 4.1, we may assume that a ≥ |b| and c ≥ |d|.
(⇒): Suppose that T is smooth. For (u1, v1), (u2, v2) ∈ Sl2∞

, let δ(u1,v1),(u2,v2) ∈
L(2l2∞)∗ such that

δ(u1,v1),(u2,v2)(L) = L((u1, v1), (u2, v2)) for L ∈ L(2l2∞). Then ‖δ(u1,v1),(u2,v2)‖ ≤
1. Note that, by Theorem 3.1, 1 = ‖δ(1,1),(1,±1)‖ = ‖δ(1,−1),(−1,1)‖ = ‖δ(−1,1),(1,1)‖.
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Obviously,

|δ(1,1),(1,1)(T )| = |(a+ b) + (c+ d)|, |δ(1,−1),(−1,1)(T )| = |(a+ b)− (c+ d)|,
|δ(1,1),(1,−1)(T )| = |(a− b)− (c− d)|, |δ(−1,1),(1,1)(T )| = |(a− b) + (c− d)|.

Hence, if T ∈ smBL(2l2∞), then ‖T‖ = 1, so, by Theorem 2.1, (|a+ b|+ |c+ d| =
1, |a− b|+ |c− d| < 1) or (|a− b|+ |c− d| = 1, |a+ b|+ |c+ d| < 1). Suppose that
|a+b|+ |c+d| = 1, |a−b|+ |c−d| < 1. We will show that 0 < |a+b| < 1. Otherwise.
Then a + b = 1 or a + b = 0. Suppose that a + b = 1. Let f1 ∈ L(2l2∞)∗ such that
f1(x1x2) = 1 = f1(y1y2), f1(x1y2) = 0 = f1(x2y1), and let f2 ∈ L(2l2∞)∗ such that
1 = f2(x1x2) = f2(y1y2) = f2(x1y2) = f2(x2y1). Since f1 6= f2, 1 = ‖fj‖ = fj(T )
for j = 1, 2, T is not smooth, which is a contradiction. Suppose that a + b = 0.
Then c + d = 1. Let g1 ∈ L(2l2∞)∗ such that g1(x1x2) = 0 = g1(y1y2), g1(x1y2) =
1 = g1(x2y1). Since g1 6= f2, 1 = ‖g1‖ = g1(T ), T is not smooth, which is a
contradiction. Therefore, if |a + b| + |c + d| = 1, |a − b| + |c − d| < 1, then 0 <
|a + b| < 1. Similarly as the case that |a + b| + |c + d| = 1, |a − b| + |c − d| < 1, if
|a− b|+ |c− d| = 1, |a+ b|+ |c+ d| < 1, then we should have 0 < |a− b| < 1.

(⇐): Let f ∈ L(2l2∞)∗ such that 1 = ‖f‖ = f(T ) with α = f(x1x2), β =
f(y1y2), δ = f(x1y2), γ = f(x2y1).

Case 1: 0 < |a+ b| < 1, |a+ b|+ |c+ d| = 1, |a− b|+ |c− d| < 1

By Theorem 2.1, ‖T‖ = 1. Note that

(∗) a+ b+ c+ d = 1 = aα+ bβ + cδ + dγ.

By Theorem 2.1, it follows that, for a sufficiently large n ∈ N,

(∗∗) 1 ≥ ‖ax1x2 + (b± 1

n
)y1y2 + (c∓ 1

n
)x1y2 + dx2y1‖

1 ≥ ‖ax1x2 + (b± 1

n
)y1y2 + cx1y2 + (d∓ 1

n
)x2y1‖

1 ≥ ‖(a± 1

n
)x1x2 + by1y2 + (c∓ 1

n
)x1y2 + dx2y1‖

From (∗∗), 1 ≥ f(ax1x2 + (b± 1
n )y1y2 + (c∓ 1

n )x1y2 + dx2y1) = 1 + 1
n |β− δ|, hence

β = δ and 1 ≥ f(ax1x2 + (b± 1
n )y1y2 + cx1y2 + (d∓ 1

n )x2y1) = 1 + 1
n |β − γ|, hence

β = γ. 1 ≥ f((a± 1
n )x1x2+by1y2+(c∓ 1

n )x1y2+dx2y1) = 1+ 1
n |α−δ|, hence α = δ.

Therefore, by (∗), 1 = α = β = δ = γ, hence f is uniquely determined. Therefore,
T is smooth.

Case 2: 0 < |a− b| < 1, |a− b|+ |c− d| = 1, |a+ b|+ |c+ d| < 1

By Case 1 and Theorem 4.1, T is smooth. 2

Remark. Nine months after the acceptance of this paper in Kyungpook Math. J.,
the author found that W. Cavalcante and D. Pellegrino had proved in [2], indepen-
dently, Theorems 2.1, 2.4 and 3.4.



The Geometry of L(2l2∞) 53

References

[1] R. M. Aron, Y. S. Choi, S. G. Kim and M. Maestre, Local properties of polynomials
on a Banach space, Illinois J. Math., 45 (2001), 25–39.

[2] W. Cavalcante and D. Pellegrino, Geometry of the closed unit ball of the space of
bilinear forms on l2∞, arXiv:1603.01535v2.

[3] Y. S. Choi, H. Ki and S. G. Kim, Extreme polynomials and multilinear forms on l1,
J. Math. Anal. Appl., 228(1998), 467–482.

[4] Y. S. Choi and S. G. Kim, The unit ball of P(2l22), Arch. Math.(Basel), 71(1998),
472–480.

[5] Y. S. Choi and S. G. Kim, Extreme polynomials on c0, Indian J. Pure Appl. Math.,
29(1998), 983–989.

[6] Y. S. Choi and S. G. Kim, Smooth points of the unit ball of the space P(2l1), Results
Math., 36(1999), 26–33.

[7] Y. S. Choi and S. G. Kim, Exposed points of the unit balls of the spaces P(2l2p) (p =
1, 2,∞), Indian J. Pure Appl. Math., 35(2004), 37–41.

[8] S. Dineen, Complex Analysis on Infinite Dimensional Spaces, Springer-Verlag, London
(1999).

[9] S. Dineen, Extreme integral polynomials on a complex Banach space, Math. Scand.,
92(2003), 129–140.

[10] B. C. Grecu, Geometry of 2-homogeneous polynomials on lp spaces, 1 < p < ∞, J.
Math. Anal. Appl., 273(2002), 262–282.

[11] B. C. Grecu, G. A. Munoz-Fernandez and J. B. Seoane-Sepulveda,, Unconditional
constants and polynomial inequalities, J. Approx. Theory, 161(2009), 706–722.

[12] S. G. Kim, Exposed 2-homogeneous polynomials on P(2l2p) (1 ≤ p ≤ ∞), Math. Proc.
R. Ir. Acad., 107A(2007), 123–129.

[13] S. G. Kim, The unit ball of Ls(2l2∞), Extracta Math., 24(2009), 17–29.

[14] S. G. Kim, The unit ball of P(2d∗(1, w)2), Math. Proc. R. Ir. Acad., 111A(2011),
79–94.

[15] S. G. Kim, The unit ball of Ls(2d∗(1, w)2), Kyungpook Math. J., 53(2013), 295–306.

[16] S. G. Kim, Smooth polynomials of P(2d∗(1, w)2), Math. Proc. R. Ir. Acad.,
113A(2013), 45–58.

[17] S. G. Kim, Extreme bilinear forms of L(2d∗(1, w)2), Kyungpook Math. J., 53(2013),
625–638.

[18] S. G. Kim, Exposed symmetric bilinear forms of Ls(2d∗(1, w)2), Kyungpook Math.
J., 54(2014), 341–347.

[19] S. G. Kim, Exposed bilinear forms of L(2d∗(1, w)2), Kyungpook Math. J., 55(2015),
119–126.

[20] S. G. Kim, Exposed 2-homogeneous polynomials on the 2-dimensional real predual of
Lorentz sequence space, Mediterr. J. Math., 7(2015), 1–13

[21] S. G. Kim and S.H. Lee, Exposed 2-homogeneous polynomials on Hilbert spaces, Proc.
Amer. Math. Soc., 131(2003), 449–453.



54 Sung Guen Kim

[22] J. Lee and K. S. Rim, Properties of symmetric matrices, J. Math. Anal. Appl.,
305(2005), 219–226.

[23] G. A. Munoz-Fernandez, S. Revesz and J. B. Seoane-Sepulveda, Geometry of ho-
mogeneous polynomials on non symmetric convex bodies, Math. Scand., 105(2009),
147–160.

[24] G. A. Munoz-Fernandez and J. B. Seoane-Sepulveda, Geometry of Banach spaces of
trinomials, J. Math. Anal. Appl., 340(2008), 1069–1087.

[25] R. A. Ryan and B. Turett Geometry of spaces of polynomials, J. Math. Anal. Appl.,
221(1998), 698–711.


