DOI QR코드

DOI QR Code

Extreme Bilinear Forms of $\mathcal{L}(^2d_*(1,w)^2)$

  • Kim, Sung Guen (Department of Mathematics, Kyungpook National University)
  • Received : 2012.11.12
  • Accepted : 2013.06.20
  • Published : 2013.12.23

Abstract

First we present the explicit formula for the norm of a bilinear form on the 2-dimensional real predual of the Lorentz sequence space $d_*(1,w)^2$. Using this formula, we classify the extreme points of the unit ball of $\mathcal{L}(^2d_*(1,w)^2)$.

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea(NRF)

References

  1. R. M. Aron, Y. S. Choi, S. G. Kim and M. Maestre, Local properties of polynomials on a Banach space, Illinois J. Math. 45(2001), 25-39.
  2. Y. S. Choi, H. Ki and S. G. Kim, Extreme polynomials and multilinear forms on $l_1$, J. Math. Anal. Appl. 228(1998), 467-482. https://doi.org/10.1006/jmaa.1998.6161
  3. Y. S. Choi and S. G. Kim, The unit ball of $P(^2l^2_2)$, Arch. Math. (Basel) 71(1998), 472-480. https://doi.org/10.1007/s000130050292
  4. Y. S. Choi and S. G. Kim, Extreme polynomials on $c_0$, Indian J. Pure Appl. Math. 29(1998), 983-989.
  5. Y. S. Choi and S. G. Kim, Smooth points of the unit ball of the space $P(^2l_1)$, Results Math. 36(1999), 26-33. https://doi.org/10.1007/BF03322099
  6. Y. S. Choi and S. G. Kim, Exposed points of the unit balls of the spaces $P(^2l^2_p)$ (p =1, 2, ${\infty}$), Indian J. Pure Appl. Math. 35(2004), 37-41.
  7. S. Dineen, Complex Analysis on In nite Dimensional Spaces, Springer-Verlag, London (1999).
  8. S. Dineen, Extreme integral polynomials on a complex Banach space Math. Scand. 92(2003), 129-140. https://doi.org/10.7146/math.scand.a-14397
  9. B. C. Grecu, Geometry of 2-homogeneous polynomials on $l_p$ spaces, 1 < p < ${\infty}$, J. Math. Anal. Appl. 273(2002), 262-282. https://doi.org/10.1016/S0022-247X(02)00217-2
  10. B. C. Grecu, G. A. Munoz-Fernandez and J.B. Seoane-Sepulveda, Unconditional con-stants and polynomial inequalities, J. Approx. Theory 161(2009), 706-722. https://doi.org/10.1016/j.jat.2008.12.001
  11. S. G. Kim, Exposed 2-homogeneous polynomials on $P(^2l^2_p)(1{\leq}p{\leq}{\infty})$, Math. Proc. Royal Irish Acad. 107A(2007), 123-129.
  12. S. G. Kim, The unit ball of $L_s(^2l^2_{\infty})$, Extracta Math. 24(2009), 17-29.
  13. S. G. Kim, The unit ball of $P(^2d_*(1,w)^2)$, Math. Proc. Royal Irish Acad. 111A(2011), 79-94.
  14. S. G. Kim, The unit ball of $L_s(^2d_*(1,w)^2)$, Kyungpook Math. J. 53(2013), 295-306. https://doi.org/10.5666/KMJ.2013.53.2.295
  15. S. G. Kim, Smooth polynomials of $P(^2d_*(1,w)^2)$, Math. Proc. Royal Irish Acad. 113A(2013), 45-58.
  16. S. G. Kim and S. H. Lee, Exposed 2-homogeneous polynomials on Hilbert spaces, Proc. Amer. Math. Soc. 131(2003), 449-453. https://doi.org/10.1090/S0002-9939-02-06544-9
  17. J. Lee and K. S. Rim, Properties of symmetric matrices, J. Math. Anal. Appl. 305(2005), 219-226. https://doi.org/10.1016/j.jmaa.2004.11.011
  18. G. A. Munoz-Fernandez, S. Revesz and J. B. Seoane-Sepulveda, Geometry of ho-mogeneous polynomials on non symmetric convex bodies, Math. Scand. 105(2009), 147-160. https://doi.org/10.7146/math.scand.a-15111
  19. G. A. Munoz-Fernandez and J. B. Seoane-Sepulveda, Geometry of Banach spaces of trinomials, J. Math. Anal. Appl. 340(2008), 1069-1087. https://doi.org/10.1016/j.jmaa.2007.09.010
  20. R. A. Ryan and B. Turett, Geometry of spaces of polynomials, J. Math. Anal. Appl. 221(1998), 698-711. https://doi.org/10.1006/jmaa.1998.5942

Cited by

  1. Exposed 2-Homogeneous Polynomials on the two-Dimensional Real Predual of Lorentz Sequence Space vol.13, pp.5, 2016, https://doi.org/10.1007/s00009-015-0658-4
  2. Exposed Bilinear Forms of 𝓛(2d*(1, w)2) vol.55, pp.1, 2015, https://doi.org/10.5666/KMJ.2015.55.1.119
  3. The Geometry of the Space of Symmetric Bilinear Forms on ℝ2with Octagonal Norm vol.56, pp.3, 2016, https://doi.org/10.5666/KMJ.2016.56.3.781
  4. Exposed Symmetric Bilinear Forms of 𝓛s(2d*(1, ω)2) vol.54, pp.3, 2014, https://doi.org/10.5666/KMJ.2014.54.3.341
  5. Extreme bilinear forms on $$\mathbb {R}^n$$Rn with the supremum norm vol.77, pp.2, 2018, https://doi.org/10.1007/s10998-018-0246-z