Acknowledgement
Supported by : National Research Foundation of Korea(NRF)
References
- R. M. Aron, Y. S. Choi, S. G. Kim and M. Maestre, Local properties of polynomials on a Banach space, Illinois J. Math. 45(2001), 25-39.
-
Y. S. Choi, H. Ki and S. G. Kim, Extreme polynomials and multilinear forms on
$l_1$ , J. Math. Anal. Appl. 228(1998), 467-482. https://doi.org/10.1006/jmaa.1998.6161 -
Y. S. Choi and S. G. Kim, The unit ball of
$P(^2l^2_2)$ , Arch. Math. (Basel) 71(1998), 472-480. https://doi.org/10.1007/s000130050292 -
Y. S. Choi and S. G. Kim, Extreme polynomials on
$c_0$ , Indian J. Pure Appl. Math. 29(1998), 983-989. -
Y. S. Choi and S. G. Kim, Smooth points of the unit ball of the space
$P(^2l_1)$ , Results Math. 36(1999), 26-33. https://doi.org/10.1007/BF03322099 -
Y. S. Choi and S. G. Kim, Exposed points of the unit balls of the spaces
$P(^2l^2_p)$ (p =1, 2,${\infty}$ ), Indian J. Pure Appl. Math. 35(2004), 37-41. - S. Dineen, Complex Analysis on Innite Dimensional Spaces, Springer-Verlag, London (1999).
- S. Dineen, Extreme integral polynomials on a complex Banach space Math. Scand. 92(2003), 129-140. https://doi.org/10.7146/math.scand.a-14397
-
B. C. Grecu, Geometry of 2-homogeneous polynomials on
$l_p$ spaces, 1 < p <${\infty}$ , J. Math. Anal. Appl. 273(2002), 262-282. https://doi.org/10.1016/S0022-247X(02)00217-2 - B. C. Grecu, G. A. Munoz-Fernandez and J.B. Seoane-Sepulveda, Unconditional con-stants and polynomial inequalities, J. Approx. Theory 161(2009), 706-722. https://doi.org/10.1016/j.jat.2008.12.001
-
S. G. Kim, Exposed 2-homogeneous polynomials on
$P(^2l^2_p)(1{\leq}p{\leq}{\infty})$ , Math. Proc. Royal Irish Acad. 107A(2007), 123-129. -
S. G. Kim, The unit ball of
$L_s(^2l^2_{\infty})$ , Extracta Math. 24(2009), 17-29. -
S. G. Kim, The unit ball of
$P(^2d_*(1,w)^2)$ , Math. Proc. Royal Irish Acad. 111A(2011), 79-94. -
S. G. Kim, The unit ball of
$L_s(^2d_*(1,w)^2)$ , Kyungpook Math. J. 53(2013), 295-306. https://doi.org/10.5666/KMJ.2013.53.2.295 -
S. G. Kim, Smooth polynomials of
$P(^2d_*(1,w)^2)$ , Math. Proc. Royal Irish Acad. 113A(2013), 45-58. - S. G. Kim and S. H. Lee, Exposed 2-homogeneous polynomials on Hilbert spaces, Proc. Amer. Math. Soc. 131(2003), 449-453. https://doi.org/10.1090/S0002-9939-02-06544-9
- J. Lee and K. S. Rim, Properties of symmetric matrices, J. Math. Anal. Appl. 305(2005), 219-226. https://doi.org/10.1016/j.jmaa.2004.11.011
- G. A. Munoz-Fernandez, S. Revesz and J. B. Seoane-Sepulveda, Geometry of ho-mogeneous polynomials on non symmetric convex bodies, Math. Scand. 105(2009), 147-160. https://doi.org/10.7146/math.scand.a-15111
- G. A. Munoz-Fernandez and J. B. Seoane-Sepulveda, Geometry of Banach spaces of trinomials, J. Math. Anal. Appl. 340(2008), 1069-1087. https://doi.org/10.1016/j.jmaa.2007.09.010
- R. A. Ryan and B. Turett, Geometry of spaces of polynomials, J. Math. Anal. Appl. 221(1998), 698-711. https://doi.org/10.1006/jmaa.1998.5942
Cited by
- Exposed 2-Homogeneous Polynomials on the two-Dimensional Real Predual of Lorentz Sequence Space vol.13, pp.5, 2016, https://doi.org/10.1007/s00009-015-0658-4
- Exposed Bilinear Forms of 𝓛(2d*(1, w)2) vol.55, pp.1, 2015, https://doi.org/10.5666/KMJ.2015.55.1.119
- The Geometry of the Space of Symmetric Bilinear Forms on ℝ2with Octagonal Norm vol.56, pp.3, 2016, https://doi.org/10.5666/KMJ.2016.56.3.781
- Exposed Symmetric Bilinear Forms of 𝓛s(2d*(1, ω)2) vol.54, pp.3, 2014, https://doi.org/10.5666/KMJ.2014.54.3.341
- Extreme bilinear forms on $$\mathbb {R}^n$$Rn with the supremum norm vol.77, pp.2, 2018, https://doi.org/10.1007/s10998-018-0246-z