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Abstract. We classify the exposed symmetric bilinear forms of the unit ball of

Ls(
2d∗(1, w)2).

1. Introduction

We write BE for the closed unit ball of a real Banach space E and the dual
space of E is denoted by E∗. x ∈ BE is called an extreme point of BE if y, z ∈ BE

with x = 1
2 (y + z) implies x = y = z. x ∈ BE is called an exposed point of BE if

there is a f ∈ E∗ so that f(x) = 1 = ∥f∥ and f(y) < 1 for every y ∈ BE \ {x}.
It is easy to see that every exposed point of BE is an extreme point. We denote
by expBE and extBE the sets of exposed and extreme of BE , respectively. For
n ≥ 2, we denote by L(nE) the Banach space of all continuous n-linear forms
on E endowed with the norm ∥T∥ = sup∥xk∥=1,1≤k≤n |T (x1, · · · , xn)|. Ls(

nE) de-
notes the subspace of all continuous symmetric n-linear forms on E. A mapping
P : E → R is a continuous n-homogeneous polynomial if there exists T ∈ Ls(

nE)
such that P (x) = T (x, · · · , x) for every x ∈ E. We denote by P(nE) the Banach
space of all continuous n-homogeneous polynomials from E into R endowed with
the norm ∥P∥ = sup∥x∥=1 |P (x)|. For more details about the theory of multilinear
mappings and polynomials on a Banach space, we refer to [7]. We will denote by
T ((x1, y1), (x2, y2)) = ax1x2+by1y2+c(x1y2+x2y1) and P (x, y) = ax2+by2+cxy
a symmetric bilinear form and a 2-homogeneous polynomial on a real Banach space
of dimension 2 respectively. For 1 ≤ p ≤ ∞, we let l2p = R2 with the lp-norm. Note
that in ([6], Theorem 1, remark after Theorem 1, and Theorem 2) the following
results are proved:

(i) expBP(2l21)
= extBP(2l21)

\{±(x2 − y2 ± 2xy)};
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(ii) expBP(2l2∞) = extBP(2l2∞)\{±( 12x
2 − 1

2y
2 ± xy)}.

The author [11] characterized expBP(2l2p)
as follows:

(i) If 1 < p < 2, then expBP(2l2p)
= extBP(2l2p)

;

(ii) If 2 < p < ∞, then expBP(2l2p)
= extBP(2l2p)

\{±x2,±y2)}.
We refer to ([1–6, 8–21] and references therein) for some recent work about

extremal properties of multilinear mappings and homogeneous polynomials on some
classical Banach spaces.

We denote the 2-dimensional real predual of the Lorentz sequence space with a
positive weight 0 < w < 1 by

d∗(1, w)
2 := {(x, y) ∈ R2 : ∥(x, y)∥d∗ := max{|x|, |y|, |x|+ |y|

1 + w
}.

Very recently, the author [14] characterize the extreme points of the unit ball of
Ls(

2d∗(1, w)
2). Using their results, in this note, we show that expBLs(2d∗(1,w)2) =

extBLs(2d∗(1,w)2) for every 0 < w < 1.

2. Main Results

Theorem 2.1. Let T ((x1, y1), (x2, y2)) = ax1x2 + by1y2 + c(x1y2 + x2y1) ∈
Ls(

2d∗(1, w)
2). Then the following are equivalent:

(a) ax1x2 + by1y2 + c(x1y2 + x2y1) ∈ expBLs(2d∗(1,w)2);

(b) −ax1x2 − by1y2 −+c(x1y2 + x2y1) ∈ expBLs(2d∗(1,w)2);

(c) ax1x2 + by1y2 − c(x1y2 + x2y1) ∈ expBLs(2d∗(1,w)2);

(d) bx1x2 + ay1y2 + c(x1y2 + x2y1) ∈ expBLs(2d∗(1,w)2).

Proof. Let S((x1, y1), (x2, y2)) := T ((u1, v1), (u2, v2)) for some ((u1, v1), (u2, v2)) =
((x1, y1), (−x2,−y2)) or ((x1,−y1), (x2,−y2)) or ((y1, x1), (y2, x2)). Then S ∈
Ls(

2d∗(1, w)
2) and T is exposed if and only if S is exposed. 2

Theorem 2.2. [14, Theorem 2.3] Let T ((x1, y1), (x2, y2)) = ax1x2 + by1y2 +
c(x1y2 + x2y1) ∈ Ls(

2d∗(1, w)
2). Then

(a) Let w <
√
2− 1. Then T is extreme if and only if

T ∈ {±x1x2,±y1y2,±
1

1 + w2
(x1x2 + y1y2),

± 1

(1 + w)2
[x1x2 + y1y2 ± (x1y2 + x2y1)],

± 1

1 + 2w − w2
[x1x2 − y1y2 ± (x1y2 + x2y1)],
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± 1

1 + w2
[x1x2 − y1y2 ± w(x1y2 + x2y1)],

± 1

1 + w2
[wx1x2 − wy1y2 ± (x1y2 + x2y1)],

± 1

(1 + w)2(1− w)
[(1− w − w2)x1x2 − wy1y2 ± (x1y2 + x2y1)],

± 1

(1 + w)2(1− w)
[wx1x2 − (1− w − w2)y1y2 ± (x1y2 + x2y1)]}.

(b) Let w =
√
2− 1. Then T is extreme if and only if

T ∈ {±x1x2,±y1y2,±
2 +

√
2

4
(x1x2 + y1y2),±

1

2
[x1x2 + y1y2 ± (x1y2 + x2y1)],

±
√
2

4
[x1x2 + y1y2 ± (

√
2 + 1)(x1y2 + x2y1)],

±
√
2

4
[(
√
2 + 1)(x1y2 − x2y1)± (x1y2 + x2y1)]}.

(c) Let w >
√
2− 1. Then T is extreme if and only if

T ∈ {±x1x2,±y1y2,±
1

1 + w2
(x1x2 + y1y2),

± 1

(1 + w)2
[x1x2 + y1y2 ± (x1y2 + x2y1)],

± 1

1 + 2w − w2
[x1x2 − y1y2 ± (x1y2 + x2y1)],

± 1

1 + w2
[x1x2 − y1y2 ±

1− w

1 + w
(x1y2 + x2y1)],

± 1

1 + w2
[
1− w

1 + w
(x1x2 − y1y2)± (x1y2 + x2y1)],

± 1

2 + 2w
[(2 + w)x1x2 −

1

w
y1y2 ± (x1y2 + x2y1)],

± 1

2 + 2w
[
1

w
x1x2 − (2 + w)y1y2 ± (x1y2 + x2y1)]}.

Theorem 2.3. Let E be a real Banach space such that extBE is finite. Suppose
that x ∈ extBE satisfies that there exists an f ∈ E∗ with f(x) = 1 = ∥f∥ and
|f(y)| < 1 for every y ∈ extBE\{x}. Then x ∈ expBE .

Proof. Let extBE = {x1, . . . , xm}. By the Krein-Milman theorem, BE is the
closed convex hull of extBE . Let z ∈ BE such that f(z) = 1. We will show
that z = x. Let x = xi0 for some 1 ≤ i0 ≤ m. By the Krein-Milman theorem,

z = limj→∞ λ
(j)
1 x1+ · · ·+λ

(j)
m xm for some

∑
1≤k≤m |λ(j)

k | ≤ 1 for every j ∈ N. Since
(λ

(j)
1 ), . . . , (λ

(j)
m ) are sequences in [−1, 1], there exist subsequences (β

(j)
1 ), . . . , (β

(j)
m )
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of (λ
(j)
1 ), . . . , (λ

(j)
m ), respectively such that limj→∞ β

(j)
k = βk ∈ [−1, 1] for each

k = 1, . . . ,m. Thus z = β1x1 + · · ·+ βmxm and
∑

1≤k≤m |βk| ≤ 1.

Claim: βk = 0 for every 1 ≤ k ̸= i0 ≤ m

Otherwise. Let βk0 ̸= 0 for some 1 ≤ k0 ̸= i0 ≤ m and δ := max{|f(xk)| : 1 ≤
k ̸= i0 ≤ m} < 1. Then

1 = f(z) = βi0f(x) +
∑

1≤k ̸=i0≤m

βkf(xk)

≤ |βi0 | |f(x)|+ |βk0 | |f(xk0)|+
∑

1≤k ̸=i0,k ̸=k0≤m

|βk| |f(xk)|

≤ |βi0 | |f(x)|+ |βk0 |δ +
∑

1≤k ̸=i0,k ̸=k0≤m

|βk| |f(xk)|

< |βi0 | |f(x)|+ |βk0 |+
∑

1≤k ̸=i0,k ̸=k0≤m

|βk| |f(xk)|

≤ |βi0 |+ |βk0 |+
∑

1≤k ̸=i0,k ̸=k0≤m

|βk|

≤ 1,

which is impossible. Therefore, 1 = f(z) = βi0f(x) = βi0 , so z = β1x1 + · · · +
βmxm = x. 2

Theorem 2.4. Let f ∈ Ls(
2d∗(1, w)

2)∗ and α = f(x1x2), β = f(y1y2), γ =
f(x1y2 + x2y1).

(a) Let w <
√
2− 1. Then

∥f∥ = max{|α|, |β|, 1

1 + w2
|α+ β|, 1

(1 + w)2
(|α+ β|+ |γ|),

1

1 + 2w − w2
(|α− β|+ |γ|), 1

1 + w2
(|α− β|+ w|γ|),

1

1 + w2
(w|α− β|+ |γ|), 1

(1 + w)2(1− w)
(|(1− w − w2)α− wβ|+ |γ|),

1

(1 + w)2(1− w)
(|wα− (1− w − w2)β|+ |γ|)}.

(b) Let w =
√
2− 1. Then

∥f∥ = max{|α|, |β|, 2 +
√
2

4
|α+ β|, 1

2
(|α+ β|+ |γ|),

√
2

4
(|α− β|+ (

√
2 + 1)|γ|),

√
2

4
((
√
2 + 1)|α− β|+ |γ|)}.
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(c) Let
√
2− 1 < w. Then

∥f∥ = max{|α|, |β|, 1

1 + w2
|α+ β|, 1

(1 + w)2
(|α+ β|+ |γ|),

1

1 + 2w − w2
(|α− β|+ |γ|), 1

1 + w2
(|α− β|+ 1− w

1 + w
|γ|),

1

1 + w2
(
1− w

1 + w
|α− β|+ |γ|), 1

2 + 2w
(|(2 + w)α− 1

w
β|+ |γ|),

1

2 + 2w
(| 1
w
α− (2 + w)β|+ |γ|)}.

Proof. It follows from Theorem 2.2 since

∥f∥ = sup{|f(T )| : T ∈ extBLs(2d∗(1,w)2)}. �

Using Theorems 2.1–4, we classify the exposed symmetric bilinear forms of the
unit ball of Ls(

2d∗(1, w)
2).

Theorem 2.5. expBLs(2d∗(1,w)2) = extBLs(2d∗(1,w)2).

Proof. Case 1: w <
√
2− 1

Claim: x1x2 is exposed.
Let α = 1, β = 0 = γ. By Theorem 2.4(a), f(x1x2) = 1 = ∥f∥ and |f(T )| < 1

for every T ∈ extBLs(2d∗(1,w)2) with T ̸= x1x2. By Theorem 2.3, it is exposed.
Similarly, −x1x2,±y1y2 are exposed.

Claim: 1
1+w2 (x1x2 + y1y2) is exposed.

Let α = 1+w2

2 = β, γ = 0. By Theorem 2.4(a), f( 1
1+w2 (x1x2 + y1y2)) = 1 = ∥f∥

and |f(T )| < 1 for every T ∈ extBLs(2d∗(1,w)2) with T ̸= 1
1+w2 (x1x2 + y1y2). By

Theorem 2.3, it is exposed. Similarly, − 1
1+w2 (x1x2 + y1y2) is exposed.

Claim: 1
(1+w)2 (x1x2 + y1y2 + x1y2 + x2y1) is exposed.

Let α = 1+w2

2 , β = 1+w2

2 − ϵ, γ = 2w + ϵ for a sufficiently small ϵ > 0. By
Theorem 2.4(a), f( 1

(1+w)2 (x1x2 + y1y2 + x1y2 + x2y1)) = 1 = ∥f∥ and |f(T )| < 1

for every T ∈ extBLs(2d∗(1,w)2) with T ̸= 1
(1+w)2 (x1x2 + y1y2 + x1y2 + x2y1). By

Theorem 2.3, it is exposed. Similarly, − 1
(1+w)2 (x1x2+y1y2+x1y2+x2y1) is exposed.

Claim: 1
1+w2 (x1x2 − y1y2 + w(x1y2 + x2y1)) is exposed.

Let α = 1
2 = −β, γ = w. By Theorem 2.4(a), f( 1

1+w2 (x1x2 − y1y2 + w(x1y2 +
x2y1))) = 1 = ∥f∥ and |f(T )| < 1 for every T ∈ extBLs(2d∗(1,w)2) with T ̸=

1
1+w2 (x1x2 − y1y2 + w(x1y2 + x2y1)). By Theorem 2.3, it is exposed. By Theorem

2.2, ± 1
1+w2 (wx1x2 − wy1y2 ± (x1y2 + x2y1)) are exposed.

Claim: 1
1+2w−w2 (x1x2 − y1y2 + (x1y2 + x2y1)) is exposed.

Let 2w < γ < 1 − w2 and α = 1+2w−w2−γ
2 , β = −α. By Theorem 2.4(a),

f( 1
1+2w−w2 (x1x2 − y1y2 + (x1y2 + x2y1))) = 1 = ∥f∥ and |f(T )| < 1 for every
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T ∈ extBLs(2d∗(1,w)2) with T ̸= 1
1+2w−w2 (x1x2−y1y2+(x1y2+x2y1)). By Theorem

2.3, it is exposed.

Claim: 1
(1+w)2(1−w) ((1− w − w2)x1x2 − wy1y2 + (x1y2 + x2y1)) is exposed.

Let α = w + ϵ, β = 0, γ = 1 + ϵ(−1 + w + w2) for a sufficiently small ϵ > 0. By
Theorem 2.4(a), f( 1

(1+w)2(1−w) ((1−w−w2)x1x2−wy1y2+(x1y2+x2y1))) = 1 = ∥f∥
and |f(T )| < 1 for every T ∈ extBLs(2d∗(1,w)2) with T ̸= 1

(1+w)2(1−w) ((1 − w −
w2)x1x2−wy1y2+(x1y2+x2y1)). By Theorem 2.3, it is exposed. By Theorem 2.1,
± 1

(1+w)2(1−w) (wx1x2 − (1− w − w2)y1y2 ± (x1y2 + x2y1)) are exposed.

Case 2: w =
√
2− 1

By the similar argument as Case 1, ±x1x2,±y1y2,±2+
√
2

4 (x1x2+y1y2),± 1
2 [x1x2+

y1y2±(x1y2+x2y1)] are exposed. It is enough to show that
√
2
4 [x1x2−y1y2+(

√
2+

1)(x1y2 + x2y1)] is exposed. Let α = 0 = β, γ = 2(2 −
√
2). By Theorem 2.4(b),

f(
√
2
4 [x1x2 − y1y2 + (

√
2 + 1)(x1y2 + x2y1)]) = 1 = ∥f∥ and |f(T )| < 1 for ev-

ery T ∈ extBLs(2d∗(1,w)2) with T ̸=
√
2
4 [x1x2 − y1y2 + (

√
2 + 1)(x1y2 + x2y1)]. By

Theorem 2.3, it is exposed.

Case 3:
√
2− 1 < w

By the similar argument as Case 1, ±x1x2,±y1y2,± 1
1+w2 (x1x2+y1y2),± 1

(1+w)2

[x1x2 + y1y2 ± (x1y2 + x2y1)],± 1
1+2w−w2 [x1x2 − y1y2 ± (x1y2 + x2y1)] are exposed.

Claim: 1
1+w2 [x1x2 − y1y2 +

1−w
1+w (x1y2 + x2y1)] is exposed.

Let α = 1+w2

2 = −β, γ = 0. By Theorem 2.4(c), f( 1
1+w2 [x1x2 − y1y2 +

1−w
1+w (x1y2 + x2y1)]) = 1 = ∥f∥ and |f(T )| < 1 for every T ∈ extBLs(2d∗(1,w)2)

with T ̸= 1
1+w2 [x1x2 − y1y2 +

1−w
1+w (x1y2 + x2y1)]. By Theorem 2.3, it is exposed.

By Theorem 2.1,

± 1
1+w2 [

1−w
1+w (x1x2 − y1y2)± (x1y2 + x2y1)] are exposed.

Claim: 1
2+2w [(2 + w)x1x2 − 1

wy1y2 + (x1y2 + x2y1)] is exposed.

Let α = 1− ϵ, β = −w2, γ = ϵ(2+w) for a sufficiently small ϵ > 0. By Theorem
2.4(c), f( 1

2+2w [(2+w)x1x2 − 1
wy1y2 +(x1y2 +x2y1)]) = 1 = ∥f∥ and |f(T )| < 1 for

every T ∈ extBLs(2d∗(1,w)2) with T ̸= 1
2+2w [(2 + w)x1x2 − 1

wy1y2 + (x1y2 + x2y1)].

By Theorem 2.3, it is exposed. By Theorem 2.1, ± 1
2+2w [ 1wx1x2 − (2 + w)y1y2 ±

(x1y2 + x2y1)] are exposed. 2
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