• Title/Summary/Keyword: Beta-Catenin

Search Result 267, Processing Time 0.028 seconds

Various Expression Pattern of Beta-catenin in the Preimplantation Stage of Porcine Embryos

  • Han, Jee-Soo;Koo, Deog-Bon;Shin, Bo-Rami;Lee, Kyung-Kwang;Han, Yong-Mahn
    • Proceedings of the KSAR Conference
    • /
    • 2003.06a
    • /
    • pp.56-56
    • /
    • 2003
  • Beta-catenin is very important in early development including involvement in cell adhesion, cell signaling, and developmental fate specification. Cell-cell interaction is an important process during mammalian embryonic development. In preimplantation embryos, embryonic compaction is the process of increased cellular flattening and adhesion of junctional complexes and results in a polarized distribution. Beta-catenin is associated with embryonic compaction in mammals. Here, we examined the relationship between beta-catenin expression and compaction in porcine embryos derived from in vitro fertilization. First of all, we investigated beta-catenin expression in each embryonic developmental stage and also focused on expression pattern according to full, partial and non-compaction at morula stage. We used the immunocyto-chemical method in this research. To confirm compaction affects on the embryonic development, we compared between compaction and developmental rates to the blastocyst. The result showed that compaction and non-compaction rates were 14.6% and 63.8% at 4 days after IVF, respectively The developmental rates to the blastocyst and their total cell number were 50.9% vs 36.4% and 41.4$\pm$11.5 vs 26.8$\pm$12.7 in compaction and non-compaction groups. Although no difference was detected in the ratio of ICM to total cells between two groups, total cell number of the blastocysts in compaction group was superior to that of the blastocysts in non-compaction group (P<0.05). Expression of beta-catenin appeared in the boundary of membrane surface between blastomeres in 2- and 4-cell stage, and observed irregular pattern from 8-cell to blastocyst stage. We also investigated beta-catenin expression pattern according to the degree of compaction in the 3 groups; full, partial (>50%) and non-compaction. The expression signal in fully compacted embryos was stronger than those of partial and non-compacted embryos. Especially, beta-catenin expression appeared various patterns in morula stage suggesting the aberrant distribution of beta-catenin is affected by compaction patterns. Our results suggest that abnormal beta-catenin expression was affected by embryo quality and further development in porcine embryos in vitro.

  • PDF

Parkin-induced Decrease of ${\beta}$-catenin is Mediated by Protein Kinase C in TNF-${\alpha}$-treated HeLa Cells

  • Lee, Min Ho;Jung, Byung Chul;Kim, Sung Hoon;Lee, Juyeon;Jung, Dongju;Cho, Jang-Eun;Rhee, Ki-Jong;Kim, Yoon Suk
    • Biomedical Science Letters
    • /
    • v.19 no.2
    • /
    • pp.83-89
    • /
    • 2013
  • Parkin is a protein known to have tumor suppressive functions. In a previous study, we determined that Parkin expression restores susceptibility to TNF-${\alpha}$-induced death in HeLa cells. ${\beta}$-catenin is a key protein in the Wnt signaling pathway and excessive activation of the ${\beta}$-catenin pathway can promote cancer development. In this study, we found that ${\beta}$-catenin levels decreased dramatically in Parkin over-expressing HeLa cells treated with TNF-${\alpha}$. We used chemical inhibitors of cell signaling pathways to identify the signaling molecules involved in ${\beta}$-catenin down-regulation. Our results indicate that the PKC inhibitor (RO-31-7549) blocked parkin-induced down-regulation of ${\beta}$-catenin. We also show that Parkin-induced decrease in cell viability in TNF-${\alpha}$-treated HeLa cells is alleviated upon treatment with a PKC inhibitor. Taken together, these results suggest the possibility that ${\beta}$-catenin reduction may be associated with Parkin-induced decrease of cell viability in TNF-${\alpha}$ treated HeLa cells.

E-cadherin and $\beta-catenin$ Expression and Mutation in Gastric Carcinomas (위암에서 E-cadherin과 $\beta-catenin$ 발현과 유전자 돌연변이에 관한 연구)

  • Kim Kwang Il;Park Sung-Hye;Han Sun-Ae;Chae Yang-Seok;Kim Insun
    • Journal of Gastric Cancer
    • /
    • v.1 no.4
    • /
    • pp.202-209
    • /
    • 2001
  • Purpose: When cancer cels invade the stroma, they should be dissociated from the adjacent cells at first. E-cadherin and $\beta-catenin$ constitute an important protein complex associated with cellular adhesion, development, and differentiation, especially in epithelial cells. The role of E-cadherin and $\beta-catenin$ in gastric carcinogenesis were studied. Materials and Methods: The expression of E-cadherin and $\beta-catenin$ in gastric adenocarcinomas by using immunohistochemical staining and the mutation by using polymerase chain reaction- single stranded conformation polymorphism (PCR-SSCP) and sequencing were performed in 40 adenocarcinomas and 5 dysplasia of stomach. Thirteen cases, which had lymph node metastasis, were also included for immunohistochemical staining. Results: Inappropriate cytoplasmic and/or nuclear expression of a E-cadherin-$\beta-catenin$ complex was more frequent in poorly differentiated, diffuse type signet ring cell carcinomas than in well-differentiated, intestinal type adenocarcinomas (P<0.05). However, the expression was not related with clinical stage or lymph node metastasis. Mutation of E-cadherin was detected in 4 cases by using PCR-SSCP, whereas mutation of $\beta-catenin$ was detected in 2 cases. Conclusion: E-cadherin and $\beta-catenin$ seem to be important in gastric carcinogenesis, especially in poorly differentiated diffuse type.

  • PDF

EXPRESSION OF E-CADHERIN AND ${\beta}-CATENIN$ IN RELATION TO CLINICOPATHOLOGIC FEATURES IN ORAL SQUAMOUS CELL CARCINOMA (구강 편평세포암종에서 E-cadherin과 ${\beta}-catenin$의 발현과 임상병리학적 특징)

  • Pyo, Sung-Woon;Lee, Kwang-Bae;Kim, Young-Sill;Lee, Sang-Hwa
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.28 no.5
    • /
    • pp.396-403
    • /
    • 2006
  • Changes in cell adhesion molecules are associated with infiltration and metastatic progression of cancer. Reduced expression of E-cadherin and ${\beta}-catenin$ complex in some carcinomas has been reported. The changes in the expression in oral squamous cell carcinoma (OSCC) is not fully understood and it also remains undetermined whether the expression of these adhesion molecules in metastatic lesions differs from that in the primary lesions. In the present study, therefore, we immunohistochemically examined the expression of E-cadherin and ${\beta}-catenin$ in 45 primary OSCCs and 19 metastatic lymph nodes. We compared the expression of these molecules between primary and metastatic lesions and investigated the correlation between the expression and clinicopathologic parameters. The expression of E-cadherin and ${\beta}-catenin$ was reduced in 35/45 (78.2%), 14/45 (31.2%) of primary tumors respectively, but 18/19 (94.7%) and 17/19 (89.4%) of lymph nodes showed preserved expression. The reduced expression of the E-cadherin was associated with lymph node metastasis, invasive mode and marginal status but no significant relationship was not found with ${\beta}-catenin$. In conclusion, the loss of E-cadherin and ${\beta}-catenin$ complex function is associated with progression of OSCC and suggest that the expression of this complex will be a supplementary prognostic tool.

Clinical Significance of Axin and β-catenin Protein Expression in Primary Hepatocellular Carcinomas

  • Guan, Cheng-Nong;Chen, Xin-Ming;Lou, Hai-Qing;Liao, Xiang-Hui;Chen, Bao-Ying;Zhang, Pei-Weng
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.2
    • /
    • pp.677-681
    • /
    • 2012
  • The aim of the present research was to investigate clinicopathologic correlations of immunohistochemically-demonstrated axin (axis inhibition) and ${\beta}$-catenin expression in primary hepatocellular carcinomas (HCCs), in comparison with paraneoplastic, cirrhotic and normal liver tissues. Variation in Axin expression across groups were significant (P < 0.01), correlating with alpha fetoprotein (AFP), HBsAg, cancer plugs in the portal vein, and clinical stage of HCCs(P < 0.05); however, there were no links with sex, age, and tumour size (P > 0.05). Differences in cell membrane ${\beta}$-catenin expression were also statistically significant (P < 0.01), again correlated with AFP, HBsAg, cancer plugs in the portal vein, and clinical stage in HCCs (P < 0.05) but not with sex, age, and tumour size (P > 0.05). Axin expression levels in tissues with reduced membrane ${\beta}$-catenin were low (P < 0.05), also being low with nuclear ${\beta}$-catenin expression (P < 0.05). Axin and ${\beta}$-catenin may play an important role in the genesis and progression of HCC via the Wnt signal transmission pathway. Simultaneous determination of axin, ${\beta}$-catenin, AFP, and HBsAg may be useful for early diagnosis, and metastatic and clinical staging of HCCs.

Opisthorchis viverrini Infection Activates the PI3K/AKT/PTEN and Wnt/β-catenin Signaling Pathways in a Cholangiocarcinogenesis Model

  • Yothaisong, Supak;Thanee, Malinee;Namwat, Nisana;Yongvanit, Puangrat;Boonmars, Thidarut;Puapairoj, Anucha;Loilome, Watcharin
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.23
    • /
    • pp.10463-10468
    • /
    • 2015
  • Opisthorchis viverrini (Ov) infection is the major etiological factor for cholangiocarcinoma (CCA), especially in northeast Thailand. We have previously reported significant involvement of PI3K/AKT/PTEN and $Wnt/{\beta}$-catenin in human CCA tissues. The present study, therefore, examined the expression and activation of PI3K/AKT/PTEN and $Wnt/{\beta}$-catenin signaling components during Ov-induced cholangiocarcinogenesis in a hamster animal model. Hamsters were divided into two groups; non-treated and Ov plus NDMA treated. The results of immunohistochemical staining showed an upregulation of PI3K/AKT signaling as determined by elevated expression of the $p85{\alpha}$-regulatory and $p110{\alpha}$-catalytic subunits of PI3K as well as increased expression and activation of AKT during cholangiocarcinogenesis. Interestingly, the staining intensity of activated AKT (p-AKT) increased in the apical regions of the bile ducts and strong staining was detected where the liver fluke resides. Moreover, PTEN, a negative regulator of PI3K/AKT, was suppressed by decreased expression and increased phosphorylation during cholangiocarcinogenesis. We also detected upregulation of $Wnt/{\beta}$-catenin signaling as determined by increased positive staining of Wnt3, Wnt3a, Wnt5a, Wnt7b and ${\beta}$-catenin, corresponded with the period of cholangiocarcinogenesis. Furthermore, nuclear staining of ${\beta}$-catenin was observed in CCA tissues. Our results suggest the liver fluke infection causes chronic inflammatory conditions which lead to upregulation of the PI3K/AKT and $Wnt/{\beta}$-catenin signaling pathways which may drive CCA carcinogenesis. These results provide useful information for drug development, prevention and treatment of CCA.

SDC4 Gene Silencing Favors Human Papillary Thyroid Carcinoma Cell Apoptosis and Inhibits Epithelial Mesenchymal Transition via Wnt/β-Catenin Pathway

  • Chen, Liang-Liang;Gao, Ge-Xin;Shen, Fei-Xia;Chen, Xiong;Gong, Xiao-Hua;Wu, Wen-Jun
    • Molecules and Cells
    • /
    • v.41 no.9
    • /
    • pp.853-867
    • /
    • 2018
  • As the most common type of endocrine malignancy, papillary thyroid cancer (PTC) accounts for 85-90% of all thyroid cancers. In this study, we presented the hypothesis that SDC4 gene silencing could effectively attenuate epithelial mesenchymal transition (EMT), and promote cell apoptosis via the $Wnt/{\beta}-catenin$ signaling pathway in human PTC cells. Bioinformatics methods were employed to screen the determined differential expression levels of SDC4 in PTC and adjacent normal samples. PTC tissues and adjacent normal tissues were prepared and their respective levels of SDC4 protein positive expression, in addition to the mRNA and protein levels of SDC4, $Wnt/{\beta}-catenin$ signaling pathway, EMT and apoptosis related genes were all detected accordingly. Flow cytometry was applied in order to detect cell cycle entry and apoptosis. Finally, analyses of PTC migration and invasion abilities were assessed by using a Transwell assay and scratch test. In PTC tissues, activated $Wnt/{\beta}-catenin$ signaling pathway, increased EMT and repressed cell apoptosis were determined. Moreover, the PTC K1 and TPC-1 cell lines exhibiting the highest SDC4 expression were selected for further experiments. In vitro experiments revealed that SDC4 gene silencing could suppress cell migration, invasion and EMT, while acting to promote the apoptosis of PTC cells by inhibiting the activation of the $Wnt/{\beta}-catenin$ signaling pathway. Besides, $si-{\beta}-catenin$ was observed to inhibit the promotion of PTC cell migration and invasion caused by SDC4 overexpression. Our study revealed that SDC4 gene silencing represses EMT, and enhances cell apoptosis by suppressing the activation of the $Wnt/{\beta}-catenin$ signaling pathway in human PTC.

Effect of the Extracts from the Leaves and Branches of Sageretia thea on β-catenin Proteasomal Degradation in Human Colorectal and Lung Cancer Cells (상동나무(Sageretia thea) 잎과 가지추출물의 대장암과 폐암세포의 β-catenin 분해 유도 활성)

  • Kim, Ha Na;Park, Gwang Hun;Kim, Jeong Dong;Park, Su Bin;Eo, Hyun Ji;Jeong, Jin Boo
    • Korean Journal of Plant Resources
    • /
    • v.32 no.2
    • /
    • pp.153-159
    • /
    • 2019
  • In this study, we evaluated the effect of branch (STB) and leave (STL) extracts from Sageretia thea on ${\beta}-catenin$ level in human colorecal cancer cells, SW480 and lung cancer cells, A549. STB and STL dose-dependently suppressed the growth of SW480 and A549 cells. STB and STL decreased ${\beta}-catenin$ level in both protein and mRNA level. MG132 decreased the downregulation of ${\beta}-catenin$ protein level induced by STB and STL. However, the inhibition of $GSK3{\beta}$ by LiCl or ROS scavenging by NAC did not block the reduction of ${\beta}-catenin$ protein by STB and STL. Our results suggested that STB and STL may downregulate ${\beta}-catenin$ protein level independent on $GSK3{\beta}$ and ROS. Based on these findings, STB and STL may be a potential candidate for the development of chemopreventive or therapeutic agents for human colorectal cancer and lung cancer.

Cross-talk between Wnt/β-catenin and Hippo signaling pathways: a brief review

  • Kim, Minseong;Jho, Eek-hoon
    • BMB Reports
    • /
    • v.47 no.10
    • /
    • pp.540-545
    • /
    • 2014
  • Balanced cell growth is crucial in animal development as well as tissue homeostasis. Concerted cross-regulation of multiple signaling pathways is essential for those purposes, and the dysregulation of signaling may lead to a variety of human diseases such as cancer. The time-honored Wnt/${\beta}$-catenin and recently identified Hippo signaling pathways are evolutionarily conserved in both Drosophila and mammals, and are generally considered as having positive and negative roles in cell proliferation, respectively. While most mainstream regulators of the Wnt/${\beta}$-catenin signaling pathway have been fairly well identified, the regulators of the Hippo pathway need to be more defined. The Hippo pathway controls organ size primarily by regulating cell contact inhibition. Recently, several cross-regulations occurring between the Wnt/${\beta}$-catenin and Hippo signaling pathways were determined through biochemical and genetic approaches. In the present mini-review, we mainly discuss the signal transduction mechanism of the Hippo signaling pathway, along with cross-talk between the regulators of the Wnt/${\beta}$-catenin and Hippo signaling pathways.

Mutation Hotspots in the β-Catenin Gene: Lessons from the Human Cancer Genome Databases

  • Kim, Sewoon;Jeong, Sunjoo
    • Molecules and Cells
    • /
    • v.42 no.1
    • /
    • pp.8-16
    • /
    • 2019
  • Mutations in the ${\beta}-catenin$ gene (CTNNB1) have been implicated in the pathogenesis of some cancers. The recent development of cancer genome databases has facilitated comprehensive and focused analyses on the mutation status of cancer-related genes. We have used these databases to analyze the CTNNB1 mutations assembled from different tumor types. High incidences of CTNNB1 mutations were detected in endometrial, liver, and colorectal cancers. This finding agrees with the oncogenic role of aberrantly activated ${\beta}-catenin$ in epithelial cells. Elevated frequencies of missense mutations were found in the exon 3 of CTNNB1, which is responsible for encoding the regulatory amino acids at the N-terminal region of the protein. In the case of metastatic colorectal cancers, in-frame deletions were revealed in the region spanning exon 3. Thus, exon 3 of CTNNB1 can be considered to be a mutation hotspot in these cancers. Since the N-terminal region of the ${\beta}-catenin$ protein forms a flexible structure, many questions arise regarding the structural and functional impacts of hotspot mutations. Clinical identification of hotspot mutations could provide the mechanistic basis for an oncogenic role of mutant ${\beta}-catenin$ proteins in cancer cells. Furthermore, a systematic understanding of tumor-driving hotspot mutations could open new avenues for precision oncology.