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Mutations in the β-catenin gene (CTNNB1) have been impli-

cated in the pathogenesis of some cancers. The recent devel-

opment of cancer genome databases has facilitated compre-

hensive and focused analyses on the mutation status of can-

cer-related genes. We have used these databases to analyze 

the CTNNB1 mutations assembled from different tumor types. 

High incidences of CTNNB1 mutations were detected in en-

dometrial, liver, and colorectal cancers. This finding agrees 

with the oncogenic role of aberrantly activated β-catenin in 

epithelial cells. Elevated frequencies of missense mutations 

were found in the exon 3 of CTNNB1, which is responsible for 

encoding the regulatory amino acids at the N-terminal region 

of the protein. In the case of metastatic colorectal cancers, in-

frame deletions were revealed in the region spanning exon 3. 

Thus, exon 3 of CTNNB1 can be considered to be a mutation 

hotspot in these cancers. Since the N-terminal region of the β-

catenin protein forms a flexible structure, many questions 

arise regarding the structural and functional impacts of 

hotspot mutations. Clinical identification of hotspot muta-

tions could provide the mechanistic basis for an oncogenic 

role of mutant β-catenin proteins in cancer cells. Furthermore, 

a systematic understanding of tumor-driving hotspot muta-

tions could open new avenues for precision oncology. 
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INTRODUCTION 
 

β-Catenin is an important co-activator downstream of the 

oncogenic Wnt signaling pathway, so mutations in the β-

catenin gene (CTNNB1) have been implicated in oncogene-

sis (Korinek et al., 1997; Morin et al., 1997; Polakis, 2012b). 

Recently, large-scale cancer databases, such as The Cancer 

Genome Atlas (TCGA) pan-cancer analysis project, have 

leveraged systemic analyses on genome, exome, and tran-

scriptome data from all types of cancers (Blum et al., 2018; 

Hutter and Zenklusen, 2018; Tomczak et al., 2015). Multi-

dimensional cancer genome data are available on cBioPortal, 

an open platform for cancer genome analysis and visualiza-

tion (Cerami et al., 2012; Gao et al., 2013). In this review, 

we have employed pan-cancer genome databases to ana-

lyze the current status of β-catenin gene (CTNNB1) muta-

tions to identify mutation hotspots and to re-evaluate the 

oncogenic roles of specific β-catenin mutant proteins. An 

extensive review on the clinical aspects of the β-catenin pro-

tein is beyond the scope of this mini review, so we have pro-

vided a brief introduction regarding the basic biology of the 

β-catenin protein. 

 

A BRIEF INTRODUCTION TO THE β-CATENIN 
PROTEIN 
 
β-Catenin is a multitasking protein involved in transcription 
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Fig. 1. A schematic diagram of the Wnt signaling 

pathway. (A) Wnt-off. In the absence of Wnt stimu-

lation, β-catenin is phosphorylated by CK1α and 

GSK3β followed by ubiquitin-proteasome mediated 

proteolysis. (B) Wnt-on. Upon Wnt stimulation, the 

destruction complex is not functional, so the β-

catenin protein is translocated into the nucleus and 

acts as a transcriptional co-activator to regulate 

oncogenic target genes. APC, Adenomatous poly-

posis; DVL, Disheveled. 

Fig. 2. The alteration frequency of CTNNB1 and APC 

across cancer types. Data obtained from the MSK-

IMPACT pan-cancer study on cBioportal (www.cbio-

portal.org). 
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and cell adhesion (Hur and Jeong, 2013; Kumar and 

Bashyam, 2017; Valenta et al., 2012). In particular, β-catenin 

is an important co-activator of Wnt target genes, such as 

cyclin D1 and c-myc (Korinek et al., 1997; Morin et al., 

1997). However, in differentiated cells, where Wnt signaling 

is off, the central regulatory mechanism for β-catenin is se-

quential phosphorylation in the N-terminal region followed 

by ubiquitin-mediated proteolysis (Fig. 1A). Casein Kinase-

1α phosphorylates the S45 residue and primes subsequent 

phosphorylation on T41/S37/S33 by GSK-3β, leading to the 

binding of ubiquitin E3 ligase β-transducin repeats-

containing proteins (β-TrCP) at the N-terminal region (D32 

to S37) in a phosphorylation-dependent manner (Hart et al., 

1998; Liu et al., 2002). Specific phosphorylation and ubiqui-

tination occur in the APC/Axin complex, termed as the β-

catenin destruction complex (Stamos and Weis, 2013). In 

contrast, the destruction complex functions no more, so the 

level of the β-catenin protein in the cytoplasm increases fol-

lowing Wnt activation (Fig. 1B). The mechanism by which 

Wnt signaling stabilizes β-catenin needs to be better under-

stood in the aspect of the β-catenin destruction complex 

(Kim et al., 2013; 2015; Li et al., 2012; Taelman et al., 2010). 

Finally, Wnt-stimulated β-catenin is translocated into the 

nucleus, where it acts as transcriptional co-activator with 

DNA binding TCF/LEF proteins and activates many develop-

mentally important, cancer-related and pathogenic genes 

(Nusse and Clevers, 2017). 

 

FREQUENCY OF GENOMIC ALTERATIONS IN THE 
CTNNB1 GENE IN CANCERS 
 

Small-scale targeted gene analysis demonstrates mutations 

in the β-catenin gene (CTNNB1) in some cancers (Polakis, 

2007; 2012b). Large-scale β-catenin mutational landscape 

was revealed from clinical sequencing of 10,000 prospective 

cancer patients by the Memorial Sloan Kettering-Integrated  
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Table 1. The alteration frequency of CTNNB1 in endometrial, liver, and colorectal cancer 

Cancer type Sequencing data source No. 

Sequenced

No. 

Alteration (%)

No. 

Exon3-mut (%) 

Reference 

Endometrial 

cancer 

Endometrial Cancer (MSK, 2018) 187 27 (14.4) 25 (13.4) Soumerai et al., 2018 

Uterine Corpus Endometrial Carcinoma 

(TCGA, Nature 2013) 

240 71 (29.6) 63 (26.3) Cancer Genome Atlas Re-

search et al., 2013a 

Uterine Carcinosarcoma (TCGA, PanCancer Atlas) 56 1 (1.8) 0 (0.0) Cancer Genome Atlas Re-

search et al., 2013b 

Uterine Clear Cell Carcinoma (NIH, Cancer 2017) 16 0 (0.0) 0 (0.0) Le Gallo et al., 2017 

Liver cancer Liver Hepatocellular Carcinoma (TCGA, PanCancer Atlas) 353 95 (26.9) 78 (22.1) Cancer Genome Atlas Re-

search et al., 2013b 

Liver Hepatocellular Carcinoma (AMC, Hepatology 2014) 231 53 (22.9) 46 (19.9) Ahn et al., 2014 

Liver Hepatocellular Carcinoma (RIKEN, Nat Genet 2012) 25 3 (12.0) 3 (12.0) Fujimoto et al., 2012 

Hepatocellular Carcinomas (Inserm, Nat Genet 2015) 243 87 (35.8) 76 (31.3) Schulze et al., 2015 

Hepatocellular Adenoma (Inserm, Cancer Cell 2014) 30 13 (43.3) 11 (36.7) Pilati et al., 2014 

Colorectal 

cancer 

Colorectal Adenocarcinoma (TCGA, Nature 2012) 212 11 (5.2) 1 (0.5) Cancer Genome Atlas, N. et 

al., 2012 

Colorectal Adenocarcinoma (Genentech, Nature 2012) 72 5 (6.9) 2 (2.8) Seshagiri et al., 2012 

Colorectal Adenocarcinoma (DFCI, Cell Reports 2016) 619 31 (5.0) 8 (1.3) Giannakis et al., 2016 

Metastatic colorectal cancer (MSK, Cancer Cell 2018) 1099 84 (7.6) 19 (1.7) Yaeger et al., 2018 

Colon Adenocarcinoma (TCGA, PanCancer Atlas) 389 27 (6.9) 15 (3.9) Cancer Genome Atlas Re-

search et al., 2013b 

Rectum Adenocarcinoma (TCGA, PanCancer Atlas) 137 8 (5.8) 0 (0.0) Cancer Genome Atlas Re-

search et al., 2013b 

*Data obtained from the listed cancer studies on cBioportal (www.cbioportal.org) 

 

 

 

Table 2. Status of mutations in cancer cell lines harboring activating mutations of CTNNB1 

Cancer type Cell Line Mutations 

CTNNB1 APC TP53 BRAF KRAS 

Colorectal cancer SW48 S33Y R2714C    

CCK81 T41A Y159C P278H S273N  

SNU407 T41A   R726C G12D 

HCT116 S45del    G13D 

LS180 S45F R1788C  D211G G12D 

Gastric cancer KE39 D32N  V272L   

AGS G34E    G12D 

SNU719 G34V     

OCUM1 S45C     

Endometrial cancer HEC265 D32V, X561_splice P1233L    

HEC6 D32V    V160A 

HEC108 S37P, D207G S678G, A2388V, T2514I P151H   

JHUEM2 S37C     

SNGM S37P A2V   G12V 

Lung cancer MORCPR S33L P865L, A2122dup P152Rfs*18  G13C 

SW1573 S33F    G12C 

LXF289 T41A  R248W   

HCC15 S45F, Y670* D2796G D259V   

Liver cancer HUH6 G34V  N239D, A159D   

SNU398 S37C     

Melanoma SKMEL1 S33C   V600E  

COLO783 S45del  P27L V600E  

*Mutation data obtained from Cancer Cell Line Encyclopedia (Novartis/Broad, Nature, 2012) on cBioportal (www.cbioportal.org). 
#Abbreviation: del, deletion; dup, duplication; fs, frame shift; splice, splice site mutation; *, stop codon 
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Mutation Profiling of Actionable Cancer Targets (MSK-

IMPACT) (Zehir et al., 2017). Figure 2 shows the frequency 

of CTNNB1 alterations across tumor types. A high frequency 

of CTNNB1 mutations are found in endometrial (16%), 

hepatobiliary (12%), melanoma (7%), and colorectal (6%) 

cancers. It is noteworthy that the frequency of APC muta-

tions is much higher (approximately 70%) than that of 

CTNNB1 in colorectal cancer, but CTNNB1 and APC muta-

tions exist in the exclusive manner. The alteration frequency 

of CTNNB1 in endometrial, liver, and colorectal cancer from 

other genomic analysis networks is compiled in Table 1. In 

addition, cancer cell lines with mutations in CTNNB1 are 

summarized in Table 2. 

 

Endometrial cancer 
Wnt/β-catenin pathway has been linked to endometrial can-

cer. Loss of APC function in the mouse endometrium induc-

es nuclear β-catenin accumulation in uterine hyperplasia and 

squamous cell metaplasia. Although APC loss alone does not 

lead to malignant transformation, APC loss enhances endo-

metrial tumorigenesis driven by PTEN loss (van der Zee et al., 

2013). The majority of CTNNB1 alterations occur in endome-

trial carcinoma, but not in carcinosarcoma or clear cell carci-

noma as indicated in Table 1 (Cancer Genome Atlas Re-

search et al., 2013a; Cancer Genome Atlas Research et al., 

2013b; Le Gallo et al., 2017; Soumerai et al., 2018). In en-

dometrial cancer cases from TCGA, the alterations of 

CTNNB1 or APC genes are 30% or 12% of 240 patients, 

respectively (Cancer Genome Atlas Research et al., 2013a). 

Loss of APC function arises from truncation of the gene, but 

the frequency is only 6% in endometrial cancer. Thus, in 

endometrial cancer, CTNNB1 mutations, rather than APC 

mutations, might be direct driver mutations. Recently, 245 

endometrial cancer patient samples were sequenced using 

46–200 gene panels. CTNNB1 mutations appear more fre-

quently in low-grade (grades 1–2) and early-stage (stages I-II) 

patients. More significantly, the patients harboring CTNNB1 

mutations are associated with worse recurrence-free survival 

(Kurnit et al., 2017). 

 

Hepatocellular carcinoma (HCC) 
Liver cancer is the seventh most common cancer and the 

fourth leading cause of cancer mortality worldwide (Bray et 

al., 2018). However, treatment options are still limited for 

patients with advanced HCC due to the heterogeneity of 

genome alterations. Genome-wide studies have been car-

ried out to identify driver genes responsible for tumorigene-

sis. SNP array analysis of 125 HCC cases have identified that 

four genes (CTNNB1 (32.8%), TP53 (20.8%), ARID1A 

(16.8%), and AXIN1 (15.2%)) are altered in more than 

10% of the samples (Guichard et al., 2012). Whole exome 

sequencing analysis with 231 early-stage HCC Korean pa-

tient samples identified recurrent somatic mutations in 

CTNNB1 (23%) and TP53 (32%) (Ahn et al., 2014). In addi-

tion, CTNNB1 and TP53 were found to be frequently altered 

in a large cohort of HCC patient samples (Cancer Genome 

Atlas Research et al., 2013b; Fujimoto et al., 2012; Schulze 

et al., 2015). The CTNNB1 gene is also frequently altered in 

hepatocellular adenoma (HCA) (Pilati et al., 2014). β-catenin 

transgenic mouse models have been used to define a func-

tion of β-catenin in HCC tumorigenesis (Nejak-Bowen and 

Monga, 2011). Ectopic expression of either wild-type or 

mutant β-catenin is not sufficient to induce tumorigenesis 

(Harada et al., 2002; Nejak-Bowen et al., 2010). In some 

cases, β-catenin may accelerate tumorigenesis in cooperat-

ing with activated Ha-Ras (Harada et al., 2004) or heterozy-

gote deleted Lkb1 (Miyoshi et al., 2009). 

 
Colorectal cancer (CRC) 
Wnt/β-cat signaling plays an important role in the tumor-

igenesis of CRC (Polakis, 2012b). In particular, alteration of 

APC, a negative regulator in Wnt signaling, is found in ap-

proximately 70% of CRC patients. Most APC alterations are 

truncation mutations, which cannot facilitate the proteolysis 

of β-catenin. In addition, loss of heterozygosity is frequently 

found in colorectal cancers. As shown in Table 1, genetic 

alterations also occurred in the CTNNB1 gene (5% of TCGA, 

5% of DFCI, 6.9% of Genentech) (Giannakis et al., 2016; 

Seshagiri et al., 2012). Several studies reported that β-catenin 

has oncogenic activity in CRC cells, so the inhibition of β-

catenin by gene targeting or knockdown resulted in growth 

inhibition of colorectal cancer cells (Cancer Genome Atlas, 

2012; Green et al., 2001; Kim et al., 2002; Roh et al., 2001). 

 

MUTATION HOTSPOTS IN EXON 3 (ENCODING THE 
N-TERMINAL REGION) OF THE β-CATENIN GENE 
 

The β-catenin protein is composed of three domains: an N-

terminal domain (~130 aa), a central domain (residue 141-

664) made of 12 Armadillo (Arm) repeats and a C-terminal 

domain (~100 aa) (Fig. 3A). The central domain of the pro-

tein, the Arm repeats domain, forms a rigid rod-like structure 

and interacts with many binding proteins (Xu and Kimelman, 

2007). However, it has been difficult to determine the struc-

ture of the terminal regions (N- and C-terminals) of β-

catenin, so they are likely to be flexible and could be intrinsi-

cally disordered (Xing et al., 2008). Interestingly, the N-

terminal region of the β-catenin protein is encoded by exon 

3 (amino acid residues 5–80) of CTNNB1, so the N-terminal 

mutations can also be referred to as exon 3 mutations. 

CTNNB1 mutation hotspots were statistically analyzed by the 

Sorting Intolerant From Tolerant (SIFT) and the Polymor-

phism Phenotyping (PolyPhen) (Adzhubei et al., 2010; Naus, 

1982; Sim et al., 2012). 

 

Missense mutations affecting the N-terminal region of the 
β-catenin protein 
In most cancers, mutations are found in the N-terminal re-

gion of β-catenin, especially in exon 3 of β-catenin mRNA 

(Fig. 3B). In endometrial cancers, integrated analysis showed 

that exon 3 mutations in β-catenin mRNA are associated 

with an aggressive phenotype of low-grade and low-stage in 

younger women (Liu et al., 2014). These studies suggest 

that β-catenin mutations can be a prognostic marker for 

aggressive endometrial cancer. Additionally, in liver cancer, 

hotspot mutations in CTNNB1 were deeply analyzed in a 

large cohort of patients from HCA to carcinoma (HCC). S45, 

K335, and N387 mutations result in weak activation of β-
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Fig. 3. Diagram of β-catenin protein domains and 

hotspot mutations. (A) A schematic diagram of the 

β-catenin protein and mRNA. UTR, untranslated 

region; CDS, coding sequence; ATG, translation 

start codon; TAA, translation stop codon. (B) Exon 

3 hotspot mutations of CTNNB1 are marked on the 

lollipop plot downloaded from the MSK-IMPACT 

pan-cancer study on cBioportal. Deep deletions 

near Exon 3 of CTNNB1 pre-mRNA are indicated as 

red lines. Deletion data were obtained from meta-

static colorectal cancer study (MSK) on cBioportal. 
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catenin and are frequently found in HCA. T41 mutations 

show relatively moderate activation. Exon 3 deletion and β-

TrCP binding site (D32-S37) mutations show strong activa-

tion and are enriched in HCA/HCC borderline and HCC, re-

spectively. Highly activated β-catenin is associated with ma-

lignant tumors, as evaluated by glutamine synthase staining. 

Although S45 mutations show weak activation, most S45 

mutant alleles in HCC are duplicated, resulting in strong 

activation of β-catenin. This study suggests that HCA harbor-

ing high/moderate mutants or S45 mutants may be associ-

ated with malignant transformation (Rebouissou et al., 

2016). Accelerated liver regeneration and hepatocarcino-

genesis was also observed in mouse overexpressing S45 

mutant β-catenin (Nejak-Bowen et al., 2010). In colorectal 

cancers, most somatic mutations are observed at D32, S33, 

G34, S37, T41, and S45 in exon 3 of β-catenin mRNA. These 

hotspot mutations have been shown to stabilize β-catenin by 

disturbing the phosphorylation-dependent ubiquitination, 

leading to tumorigenesis. S45 is a priming-phosphorylation 

site for Casein Kinase I alpha (CK1α) (Liu et al., 2002). S33, 

S37, and T41 are further phosphorylated by GSK3β. D32 

and G34 is required to bind with β-TrCP, a component of 

ubiquitin E3 ligase for phosphorylated β-catenin (Aberle et 

al., 1997; Hart et al., 1998). 

 

Exon 3-spanning in-frame deletion in metastatic 
colorectal cancers 
Recently, prospective targeted sequencing was reported 

with metastatic and early-stage colorectal cancer patients of 

a large cohort study (Yaeger et al., 2018). In this MSK study, 

the frequency of CTNNB1 alterations (8%) is slightly higher 

than that in TCGA cohort (5% of TCGA pan-cancer atlas), 

but in-frame deletion is highly enriched in the MSK cohort. 

This difference may be due to the distinct features between 

MSK and TCGA cohorts. The MSK cohort includes 47% of 

metastases that were not included in TCGA cohort, repre-

senting more aggressive and advanced disease. Activating 

hotspot mutations of β-catenin are more frequently occurred 

in microsatellite instability-high (MSI-H) tumors than in mi-

crosatellite stable (MSS) tumors (25% of MSI-H, 6% of 

MSS). Interestingly, however, exon 3-spanning in-frame 

deletions were identified only in MSS tumors and the nuclear 

staining of β-catenin was observed in tumors harboring in-

frame deletions in CTNNB1 (Yaeger et al., 2018). 

 

CONCLUSION 
 

Large-scale analysis of pan-cancer genomic database re-

vealed a high frequency of CTNNB1 mutations in endome-

trial, liver, and colorectal cancers. In addition, mutations are 

frequently located near exon 3 of CTNNB1, which encode 

for the regulatory amino acids (D32, S33, G34, S37, T41, 

and S45) at the N-terminal region of the protein. Since the 

N-terminal region is highly unstructured and flexible, the 

contributions of N-terminal hotspot mutations from a struc-

tural perspective are not easy to comprehend (Dar et al., 
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2017; Gottardi and Peifer, 2008; Xing et al., 2008). Rather, 

their contribution to cancer development should be under-

stood in terms of their roles in normal and pathogenic epi-

thelial cell states. 

 

FUTURE PERSPECTIVES 
 

Re-evaluating hotspot mutations 
The high frequency of mutations affecting the GSK3β and β-

TrCP-binding sites (D32, S33, G34, S37) can be explained by 

their roles in the β-catenin destruction complex (Megy et al., 

2005; Stamos and Weis, 2013). However, higher frequen-

cies of S45 and T41 mutations cannot be easily explained in 

terms of the residues for priming and relay kinases, respec-

tively. In fact, recent study suggested the uncoupling of 

CK1α phosphorylation on S45 residue to GSK3β phosphory-

lation on S37/S33 residues. The phosphorylations on the 

T41/S45 residues of β-catenin were spatially uncoupled from 

the phosphorylated S33/S37/T41 (Maher et al., 2010). In 

addition, a previous study reported that the phosphoryla-

tions on S33/S37/T41 can occur in the absence of the phos-

pho-S45 in colon cancer cells (Wang et al., 2003). In des-

moid-type fibromatosis, protein stability and target genes for 

the S45F mutant are different from those of the wild-type β-

catenin (Colombo et al., 2017). Moreover, the S45F muta-

tion is associated with low efficacy of a cyclooxygenase-2 

inhibitor in desmoid tumors (Hamada et al., 2014). It will be 

important to determine the oncogenic role of the S45 mu-

tant β-catenin protein, as a type of mutation distinct from 

other mutant β-catenin proteins. 

 

β-catenin in multiple protein complexes 
β-Catenin protein was first discovered as a component of 

the adherens junction (Ozawa et al., 1989). Later, it is con-

sidered as a multitasking protein involved in transcription as 

well as in cell adhesion (Hur and Jeong, 2013; Kumar and 

Bashyam, 2017; Valenta et al., 2012). However, it should be 

noted that most β-catenin proteins reside in the adhesion 

complex near the plasma membrane in which it interacts 

with E-cadherin and α-catenin with high affinities (Huber 

and Weis, 2001). Multiple roles of β-catenin protein may 

come from multiprotein assembly forming distinct complex-

es in different intracellular locations (Xu and Kimelman, 

2007). In the nucleus, β-catenin associates with DNA bind-

ing proteins, such as TCF/LEF and BCL9 (Graham et al., 

2001; Sampietro et al., 2006). Collectively, the N-terminal 

region of β-catenin is critical for regulating the adhesion and 

transcription functions of the protein. Thus, the regulatory 

mechanism of phosphorylation may differ in distinct β-

catenin complexes (Dar et al., 2016). Therefore, many ques-

tions arise as to whether the specific mutant β-catenin pro-

teins can form a previously unknown complex, in addition to 

the adhesion, destruction, and transcription complexes (Fig. 

4). We hope that the clinical information gained from the 

large cancer genome databases could facilitate the study of 

novel functions of β-catenin in RNA metabolism as an RNA-

binding protein (Hur and Jeong, 2013; Kim et al., 2009; Kim 

et al., 2012; Lee and Jeong, 2006). To enhance our under-

standing of such novel functions, a systematic mutant β-  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Proposed model for the role of mutant β-catenin proteins 

in distinct complexes. The green indicates wild-type β-catenin 

protein and the pink indicates exon 3-mutated β-catenin pro-

teins. In addition to the adhesion, destruction and transcription 

complexes with the indicated proteins, additional unknown 

protein complexes are likely to be formed by the mutant β-

catenin proteins. 

 

 

 

catenin library could be developed to link the differential 

functional impacts to specific mutations in cancer. More 

functional studies on specific mutant β-catenin proteins will 

open up new avenues for elucidating the mechanisms un-

derlying mutant β-catenin-mediated oncogenesis. 

 

Novel therapeutic approach for mutant β-catenin proteins 
β-Catenin protein has been a prime target for anti-cancer 

drug development, but some limitations may suspend suc-

cessful drug development. In most cases, wild-type β-catenin 

protein have been utilized as a target protein and Wnt sig-

naling activated transcription is used as a screening read-out 

(Cui et al., 2018; Krishnamurthy and Kurzrock, 2018; Polakis, 

2012a). As a novel strategy, the information obtained for 

mutant β-catenin can be implemented for mutant-specific 

anti-cancer therapeutics, as utilized for mutant p53 proteins 

(Bykov et al., 2018; Kotler et al., 2018). Large-scale clinical 

analysis could provide important information on the func-

tions of cancer-related proteins and cancer signaling, as 

shown here (Hyman et al., 2017). Therefore, future research 

should be directed toward a precision oncology strategy by 

identifying the molecular signature of cancer-related genes 

and exploiting cancer genome databases (Zehir et al., 2017). 
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