Browse > Article
http://dx.doi.org/10.14348/molcells.2018.0436

Mutation Hotspots in the β-Catenin Gene: Lessons from the Human Cancer Genome Databases  

Kim, Sewoon (Graduate Department of Bioconvergence Science and Technology, Dankook University)
Jeong, Sunjoo (Graduate Department of Bioconvergence Science and Technology, Dankook University)
Abstract
Mutations in the ${\beta}-catenin$ gene (CTNNB1) have been implicated in the pathogenesis of some cancers. The recent development of cancer genome databases has facilitated comprehensive and focused analyses on the mutation status of cancer-related genes. We have used these databases to analyze the CTNNB1 mutations assembled from different tumor types. High incidences of CTNNB1 mutations were detected in endometrial, liver, and colorectal cancers. This finding agrees with the oncogenic role of aberrantly activated ${\beta}-catenin$ in epithelial cells. Elevated frequencies of missense mutations were found in the exon 3 of CTNNB1, which is responsible for encoding the regulatory amino acids at the N-terminal region of the protein. In the case of metastatic colorectal cancers, in-frame deletions were revealed in the region spanning exon 3. Thus, exon 3 of CTNNB1 can be considered to be a mutation hotspot in these cancers. Since the N-terminal region of the ${\beta}-catenin$ protein forms a flexible structure, many questions arise regarding the structural and functional impacts of hotspot mutations. Clinical identification of hotspot mutations could provide the mechanistic basis for an oncogenic role of mutant ${\beta}-catenin$ proteins in cancer cells. Furthermore, a systematic understanding of tumor-driving hotspot mutations could open new avenues for precision oncology.
Keywords
${\beta}-catenin$; cancer genome database; hotspot mutations;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Huber, A.H., and Weis, W.I. (2001). The structure of the ${\beta}$-catenin/Ecadherin complex and the molecular basis of diverse ligand recognition by ${\beta}$-catenin. Cell 105, 391-402.   DOI
2 Hur, J., and Jeong, S. (2013). Multitasking ${\beta}$-catenin: from adhesion and transcription to RNA regulation. Anim. Cells Syst. 17, 299-305.   DOI
3 Hutter, C., and Zenklusen, J.C. (2018). The Cancer Genome Atlas: Creating Lasting Value beyond Its Data. Cell 173, 283-285.   DOI
4 Hyman, D.M., Taylor, B.S., and Baselga, J. (2017). Implementing Genome-Driven Oncology. Cell 168, 584-599.   DOI
5 Kim, H., Vick, P., Hedtke, J., Ploper, D., and De Robertis, E.M. (2015). Wnt signaling translocates Lys48-linked polyubiquitinated proteins to the lysosomal pathway. Cell Rep. 11, 1151-1159.   DOI
6 Kim, I., Kwak, H., Lee, H.K., Hyun, S., and Jeong, S. (2012). ${\beta}$-Catenin recognizes a specific RNA motif in the cyclooxygenase-2 mRNA 3'-UTR and interacts with HuR in colon cancer cells. Nucleic Acids Res. 40, 6863-6872.   DOI
7 Kim, J.S., Crooks, H., Foxworth, A., and Waldman, T. (2002). Proofof-principle: oncogenic ${\beta}$-catenin is a valid molecular target for the development of pharmacological inhibitors. Mol. Cancer Ther. 1, 1355-1359.
8 Kim, M.Y., Hur, J., and Jeong, S. (2009). Emerging roles of RNA and RNA-binding protein network in cancer cells. BMB Rep. 42, 125-130.   DOI
9 Kim, S.E., Huang, H., Zhao, M., Zhang, X., Zhang, A., Semonov, M.V., MacDonald, B.T., Zhang, X., Garcia Abreu, J., Peng, L., et al. (2013). Wnt stabilization of ${\beta}$-catenin reveals principles for morphogen receptor-scaffold assemblies. Science 340, 867-870.   DOI
10 Korinek, V., Barker, N., Morin, P.J., van Wichen, D., de Weger, R., Kinzler, K.W., Vogelstein, B., and Clevers, H. (1997). Constitutive transcriptional activation by a ${\beta}$-catenin-Tcf complex in APC-/- colon carcinoma. Science 275, 1784-1787.   DOI
11 Kotler, E., Shani, O., Goldfeld, G., Lotan-Pompan, M., Tarcic, O., Gershoni, A., Hopf, T.A., Marks, D.S., Oren, M., and Segal, E. (2018). A systematic p53 mutation library links differential functional impact to cancer mutation pattern and evolutionary conservation. Mol. Cell 71, 178-190 e178.   DOI
12 Krishnamurthy, N., and Kurzrock, R. (2018). Targeting the Wnt/${\beta}$-catenin pathway in cancer: Update on effectors and inhibitors. Cancer Treat Rev. 62, 50-60.   DOI
13 Kumar, R., and Bashyam, M.D. (2017). Multiple oncogenic roles of nuclear ${\beta}$-catenin. J. Biosci. 42, 695-707.   DOI
14 Kurnit, K.C., Kim, G.N., Fellman, B.M., Urbauer, D.L., Mills, G.B., Zhang, W., and Broaddus, R.R. (2017). CTNNB1 (${\beta}$-catenin) mutation identifies low grade, early stage endometrial cancer patients at increased risk of recurrence. Mod. Pathol. 30, 1032-1041.   DOI
15 Le Gallo, M., Rudd, M.L., Urick, M.E., Hansen, N.F., Zhang, S., Program, N.C.S., Lozy, F., Sgroi, D.C., Vidal Bel, A., Matias-Guiu, X., et al. (2017). Somatic mutation profiles of clear cell endometrial tumors revealed by whole exome and targeted gene sequencing. Cancer 123, 3261-3268.   DOI
16 Lee, H.K., and Jeong, S. (2006). ${\beta}$-Catenin stabilizes cyclooxygenase-2 mRNA by interacting with AU-rich elements of 3'-UTR. Nucleic acids Res. 34, 5705-5714.   DOI
17 Maher, M.T., Mo, R., Flozak, A.S., Peled, O.N., and Gottardi, C.J. (2010). ${\beta}$-catenin phosphorylated at serine 45 is spatially uncoupled from ${\beta}$-catenin phosphorylated in the GSK3 domain: implications for signaling. PloS one 5, e10184.   DOI
18 Li, V.S., Ng, S.S., Boersema, P.J., Low, T.Y., Karthaus, W.R., Gerlach, J.P., Mohammed, S., Heck, A.J., Maurice, M.M., Mahmoudi, T., et al. (2012). Wnt signaling through inhibition of ${\beta}$-catenin degradation in an intact Axin1 complex. Cell 149, 1245-1256.   DOI
19 Liu, C., Li, Y., Semenov, M., Han, C., Baeg, G.-H., Tan, Y., Zhang, Z., Lin, X., and He, X. (2002). Control of ${\beta}$-cateninphosphorylation/degradation by a dual-kinase mechanism. Cell 108, 837-847.   DOI
20 Liu, Y., Patel, L., Mills, G.B., Lu, K.H., Sood, A.K., Ding, L., Kucherlapati, R., Mardis, E.R., Levine, D.A., Shmulevich, I., et al. (2014). Clinical significance of CTNNB1 mutation and Wnt pathway activation in endometrioid endometrial carcinoma. J. Natl. Cancer Inst. 106.
21 Megy, S., Bertho, G., Gharbi-Benarous, J., Baleux, F., Benarous, R., and Girault, J.P. (2005). Solution structure of a peptide derived from the oncogenic protein ${\beta}$-Catenin in its phosphorylated and nonphosphorylated states. Peptides 26, 227-241.   DOI
22 Miyoshi, H., Deguchi, A., Nakau, M., Kojima, Y., Mori, A., Oshima, M., Aoki, M., and Taketo, M.M. (2009). Hepatocellular carcinoma development induced by conditional ${\beta}$-catenin activation in Lkb1+/-mice. Cancer Sci. 100, 2046-2053.   DOI
23 Morin, P.J., Sparks, A.B., Korinek, V., Barker, N., Clevers, H., Vogelstein, B., and Kinzler, K.W. (1997). Activation of ${\beta}$-catenin-Tcf signaling in colon cancer by mutations in ${\beta}$-catenin or APC. Science 275, 1787-1790.   DOI
24 Nusse, R., and Clevers, H. (2017). Wnt/${\beta}$-Catenin Signaling, Disease, and Emerging Therapeutic Modalities. Cell 169, 985-999.   DOI
25 Naus, J.I. (1982). Approximations for distributions of scan statistics. J. Am. Stat. Assoc. 77, 177-183.   DOI
26 Nejak-Bowen, K.N., and Monga, S.P. (2011). ${\beta}$-catenin signaling, liver regeneration and hepatocellular cancer: sorting the good from the bad. Semin. Cancer Biol. 21, 44-58.   DOI
27 Nejak-Bowen, K.N., Thompson, M.D., Singh, S., Bowen, W.C., Dar, M.J., Khillan, J., Dai, C., and Monga, S.P.S. (2010). Accelerated liver regeneration and hepatocarcinogenesis in mice overexpressing serine-45 mutant ${\beta}$-catenin. Hepatology 51, 1603-1613.   DOI
28 Ozawa, M., Baribault, H., and Kemler, R. (1989). The cytoplasmic domain of the cell adhesion molecule uvomorulin associates with three independent proteins structurally related in different species. EMBO J. 8, 1711-1717.   DOI
29 Pilati, C., Letouze, E., Nault, J.C., Imbeaud, S., Boulai, A., Calderaro, J., Poussin, K., Franconi, A., Couchy, G., Morcrette, G., et al. (2014). Genomic profiling of hepatocellular adenomas reveals recurrent FRKactivating mutations and the mechanisms of malignant transformation. Cancer cell 25, 428-441.   DOI
30 Polakis, P. (2007). The many ways of Wnt in cancer. Curr Opin Genet Dev 17, 45-51.   DOI
31 Polakis, P. (2012a). Drugging Wnt signalling in cancer. EMBO J. 31, 2737-2746.   DOI
32 Polakis, P. (2012b). Wnt signaling in cancer. Cold Spring Harbor perspectives in biology 4.
33 Schulze, K., Imbeaud, S., Letouze, E., Alexandrov, L.B., Calderaro, J., Rebouissou, S., Couchy, G., Meiller, C., Shinde, J., Soysouvanh, F., et al. (2015). Exome sequencing of hepatocellular carcinomas identifies new mutational signatures and potential therapeutic targets. Nat. Genet. 47, 505-511.   DOI
34 Rebouissou, S., Franconi, A., Calderaro, J., Letouze, E., Imbeaud, S., Pilati, C., Nault, J.C., Couchy, G., Laurent, A., Balabaud, C., et al. (2016). Genotype-phenotype correlation of CTNNB1 mutations reveals different ss-catenin activity associated with liver tumor progression. Hepatology 64, 2047-2061.   DOI
35 Roh, H., Green, D.W., Boswell, C.B., Pippin, J.A., and Drebin, J.A. (2001). Suppression of ${\beta}$-catenin inhibits the neoplastic growth of APC-mutant colon cancer cells. Cancer Res. 61, 6563-6568.
36 Sampietro, J., Dahlberg, C.L., Cho, U.S., Hinds, T.R., Kimelman, D., and Xu, W. (2006). Crystal structure of a ${\beta}$-catenin/BCL9/Tcf4 complex. Mol. Cell 24, 293-300.   DOI
37 Seshagiri, S., Stawiski, E.W., Durinck, S., Modrusan, Z., Storm, E.E., Conboy, C.B., Chaudhuri, S., Guan, Y., Janakiraman, V., Jaiswal, B.S., et al. (2012). Recurrent R-spondin fusions in colon cancer. Nature 488, 660-664.   DOI
38 Sim, N.L., Kumar, P., Hu, J., Henikoff, S., Schneider, G., and Ng, P.C. (2012). SIFT web server: predicting effects of amino acid substitutions on proteins. Nucleic Acids Res. 40, W452-457.   DOI
39 Soumerai, T.E., Donoghue, M.T.A., Bandlamudi, C., Srinivasan, P., Chang, M.T., Zamarin, D., Cadoo, K.A., Grisham, R.N., O'Cearbhaill, R.E., Tew, W.P., et al. (2018). Clinical utility of prospective molecular characterization in advanced endometrial cancer. Clin. Cancer Res. 24, 5939-5947.   DOI
40 Stamos, J.L., and Weis, W.I. (2013). The ${\beta}$-catenin destruction complex. Cold Spring Harb. Perspect. Biol. 5, a007898.   DOI
41 Taelman, V.F., Dobrowolski, R., Plouhinec, J.L., Fuentealba, L.C., Vorwald, P.P., Gumper, I., Sabatini, D.D., and De Robertis, E.M. (2010). Wnt signaling requires sequestration of glycogen synthase kinase 3 inside multivesicular endosomes. Cell 143, 1136-1148.   DOI
42 Tomczak, K., Czerwinska, P., and Wiznerowicz, M. (2015). The cancer genome atlas (TCGA): an immeasurable source of knowledge. Contemp Oncol (Pozn) 19, A68-77.
43 Valenta, T., Hausmann, G., and Basler, K. (2012). The many faces and functions of ${\beta}$-catenin. EMBO J. 31, 2714-2736.   DOI
44 van der Zee, M., Jia, Y., Wang, Y., Heijmans-Antonissen, C., Ewing, P.C., Franken, P., DeMayo, F.J., Lydon, J.P., Burger, C.W., Fodde, R., et al. (2013). Alterations in Wnt-${\beta}$-catenin and Pten signalling play distinct roles in endometrial cancer initiation and progression. J. Pathol. 230, 48-58.   DOI
45 Wang, Z.H., Vogelstein, B., and Kinzler, K.W. (2003). Phosphorylation of ${\beta}$-catenin at S33, S37, or T41 can occur in the absence of phosphorylation at T45 in colon cancer cells. Cancer Res. 63, 5234-5235.
46 Xing, Y., Takemaru, K., Liu, J., Berndt, J.D., Zheng, J.J., Moon, R.T., and Xu, W. (2008). Crystal structure of a full-length ${\beta}$-catenin. Structure 16, 478-487.   DOI
47 Xu, W., and Kimelman, D. (2007). Mechanistic insights from structural studies of ${\beta}$-catenin and its binding partners. J. Cell Sci. 120, 3337-3344.   DOI
48 Ahn, S.M., Jang, S.J., Shim, J.H., Kim, D., Hong, S.M., Sung, C.O., Baek, D., Haq, F., Ansari, A.A., Lee, S.Y., et al. (2014). Genomic portrait of resectable hepatocellular carcinomas: implications of RB1 and FGF19 aberrations for patient stratification. Hepatology 60, 1972-1982.   DOI
49 Yaeger, R., Chatila, W.K., Lipsyc, M.D., Hechtman, J.F., Cercek, A., Sanchez-Vega, F., Jayakumaran, G., Middha, S., Zehir, A., Donoghue, M.T.A., et al. (2018). Clinical sequencing defines the genomic landscape of metastatic colorectal cancer. Cancer cell 33, 125-136e123.   DOI
50 Zehir, A., Benayed, R., Shah, R.H., Syed, A., Middha, S., Kim, H.R., Srinivasan, P., Gao, J., Chakravarty, D., Devlin, S.M., et al. (2017). Mutational landscape of metastatic cancer revealed from prospective clinical sequencing of 10,000 patients. Nat. Med. 23, 703-713.   DOI
51 Blum, A., Wang, P., and Zenklusen, J.C. (2018). SnapShot: TCGAanalyzed tumors. Cell 173, 530.   DOI
52 Cancer Genome Atlas Research, N., Kandoth, C., Schultz, N., Cherniack, A.D., Akbani, R., Liu, Y., Shen, H., Robertson, A.G., Pashtan, I., Shen, R., et al. (2013a). Integrated genomic characterization of endometrial carcinoma. Nature 497, 67-73.   DOI
53 Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R.L., Torre, L.A., and Jemal, A. (2018). Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 68, 394-424.   DOI
54 Bykov, V.J.N., Eriksson, S.E., Bianchi, J., and Wiman, K.G. (2018). Targeting mutant p53 for efficient cancer therapy. Nat. Rev. Cancer 18, 89-102.   DOI
55 Cancer Genome Atlas, N. (2012). Comprehensive molecular characterization of human colon and rectal cancer. Nature 487, 330-337.   DOI
56 Cancer Genome Atlas Research, N., Weinstein, J.N., Collisson, E.A., Mills, G.B., Shaw, K.R., Ozenberger, B.A., Ellrott, K., Shmulevich, I., Sander, C., and Stuart, J.M. (2013b). The cancer genome atlas pancancer analysis project. Nat. Genet. 45, 1113-1120.   DOI
57 Cerami, E., Gao, J., Dogrusoz, U., Gross, B.E., Sumer, S.O., Aksoy, B.A., Jacobsen, A., Byrne, C.J., Heuer, M.L., Larsson, E., et al. (2012). The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2, 401-404.   DOI
58 Colombo, C., Belfiore, A., Paielli, N., De Cecco, L., Canevari, S., Laurini, E., Fermeglia, M., Pricl, S., Verderio, P., Bottelli, S., et al. (2017). ${\beta}$-catenin in desmoid-type fibromatosis: deep insights into the role of T41A and S45F mutations on protein structure and gene expression. Mol. Oncol. 11, 1495-1507.   DOI
59 Cui, C., Zhou, X., Zhang, W., Qu, Y., and Ke, X. (2018). Is ${\beta}$-catenin a druggable target for cancer therapy? Trends Biochem. Sci. 43, 623-634.   DOI
60 Aberle, H., Bauer, A., Stappert, J., Kispert, A., and Kemler, R. (1997). ${\beta}$-catenin is a target for the ubiquitin-proteosome pathway. EMBO J. 16, 3797-3804.   DOI
61 Adzhubei, I.A., Schmidt, S., Peshkin, L., Ramensky, V.E., Gerasimova, A., Bork, P., Kondrashov, A.S., and Sunyaev, S.R. (2010). A method and server for predicting damaging missense mutations. Nat. Methods. 7, 248-249.   DOI
62 Dar, M.S., Singh, P., Mir, R.A., and Dar, M.J. (2017). ${\beta}$-catenin Nterminal domain: An enigmatic region prone to cancer causing mutations. Mutat. Res. 773, 122-133.   DOI
63 Dar, M.S., Singh, P., Singh, G., Jamwal, G., Hussain, S.S., Rana, A., Akhter, Y., Monga, S.P., and Dar, M.J. (2016). Terminal regions of ${\beta}$-catenin are critical for regulating its adhesion and transcription functions. Biochim. Biophys. Acta 1863, 2345-2357.   DOI
64 Fujimoto, A., Totoki, Y., Abe, T., Boroevich, K.A., Hosoda, F., Nguyen, H.H., Aoki, M., Hosono, N., Kubo, M., Miya, F., et al. (2012). Wholegenome sequencing of liver cancers identifies etiological influences on mutation patterns and recurrent mutations in chromatin regulators. Nat. Genet. 44, 760-764.   DOI
65 Gao, J., Aksoy, B.A., Dogrusoz, U., Dresdner, G., Gross, B., Sumer, S.O., Sun, Y., Jacobsen, A., Sinha, R., Larsson, E., et al. (2013). Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci. Signal. 6, pl1.
66 Giannakis, M., Mu, X.J., Shukla, S.A., Qian, Z.R., Cohen, O., Nishihara, R., Bahl, S., Cao, Y., Amin-Mansour, A., Yamauchi, M., et al. (2016). Genomic correlates of immune-cell infiltrates in colorectal carcinoma. Cell Rep. 15, 857-865.   DOI
67 Gottardi, C.J., and Peifer, M. (2008). Terminal regions of ${\beta}$-catenin come into view. Structure 16, 336-338.   DOI
68 Guichard, C., Amaddeo, G., Imbeaud, S., Ladeiro, Y., Pelletier, L., Maad, I.B., Calderaro, J., Bioulac-Sage, P., Letexier, M., Degos, F., et al. (2012). Integrated analysis of somatic mutations and focal copynumber changes identifies key genes and pathways in hepatocellular carcinoma. Nat. Genet. 44, 694-698.   DOI
69 Graham, T.A., Ferkey, D.M., Mao, F., Kimelman, D., and Xu, W. (2001). Tcf4 can specifically recognize ${\beta}$-catenin using alternative conformations. Nat. Struct. Biol. 8, 1048-1052.   DOI
70 Green, D.W., Roh, H., Pippin, J.A., and Drebin, J.A. (2001). ${\beta}$-catenin antisense treatment decreases ${\beta}$-catenin expression and tumor growth rate in colon carcinoma xenografts. J. Surg. Res. 101, 16-20.   DOI
71 Hamada, S., Futamura, N., Ikuta, K., Urakawa, H., Kozawa, E., Ishiguro, N., and Nishida, Y. (2014). CTNNB1 S45F mutation predicts poor efficacy of meloxicam treatment for desmoid tumors: a pilot study. PloS one 9, e96391.   DOI
72 Harada, N., Miyoshi, H., Murai, N., Oshima, H., Tamai, Y., Oshima, M., and Taketo, M.M. (2002). Lack of tumorigenesis in the mouse liver after adenovirus-mediated expression of a dominant stable mutant of ${\beta}$-catenin. Cancer Res. 62, 1971-1977.
73 Harada, N., Oshima, H., Katoh, M., Tamai, Y., Oshima, M., and Taketo, M.M. (2004). Hepatocarcinogenesis in mice with ${\beta}$-catenin and Ha-ras gene mutations. Cancer Res. 64, 48-54.   DOI
74 Hart, M., Concordet, J.-P., Lassot, I., A;bert, O., Santos, E., Durand, H., Perret, C., Rubinfeld, B., Margottin, F., Benarous, R., et al. (1998). The F-box protein ${\beta}$-TrCP associates with phosphorylated ${\beta}$-catenin and regulates its activity in the cell. Curr. Biol. 9, 207-210.   DOI