Browse > Article
http://dx.doi.org/10.5483/BMBRep.2014.47.10.177

Cross-talk between Wnt/β-catenin and Hippo signaling pathways: a brief review  

Kim, Minseong (Department of Life Science, The University of Seoul)
Jho, Eek-hoon (Department of Life Science, The University of Seoul)
Publication Information
BMB Reports / v.47, no.10, 2014 , pp. 540-545 More about this Journal
Abstract
Balanced cell growth is crucial in animal development as well as tissue homeostasis. Concerted cross-regulation of multiple signaling pathways is essential for those purposes, and the dysregulation of signaling may lead to a variety of human diseases such as cancer. The time-honored Wnt/${\beta}$-catenin and recently identified Hippo signaling pathways are evolutionarily conserved in both Drosophila and mammals, and are generally considered as having positive and negative roles in cell proliferation, respectively. While most mainstream regulators of the Wnt/${\beta}$-catenin signaling pathway have been fairly well identified, the regulators of the Hippo pathway need to be more defined. The Hippo pathway controls organ size primarily by regulating cell contact inhibition. Recently, several cross-regulations occurring between the Wnt/${\beta}$-catenin and Hippo signaling pathways were determined through biochemical and genetic approaches. In the present mini-review, we mainly discuss the signal transduction mechanism of the Hippo signaling pathway, along with cross-talk between the regulators of the Wnt/${\beta}$-catenin and Hippo signaling pathways.
Keywords
${\beta}$-catenin; Crosstalk; Hippo signaling; Wnt signaling; YAP/TAZ;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Pan, D. (2010) The hippo signaling pathway in development and cancer. Dev. Cell. 19, 491-505.   DOI   ScienceOn
2 Pan, D. (2007) Hippo signaling in organ size control. Genes Dev. 21, 886-897.   DOI   ScienceOn
3 Enderle, L. and McNeill, H. (2013) Hippo gains weight: added insights and complexity to pathway control. Sci. Signal. 6, re7.   DOI   ScienceOn
4 Harvey, K. F., Zhang, X. and Thomas, D. M. (2013) The Hippo pathway and human cancer. Nat. Rev. Cancer 13, 246-257.   DOI   ScienceOn
5 Yu, F. X. and Guan, K. L. (2013) The Hippo pathway: regulators and regulations. Genes Dev. 27, 355-371.   DOI   ScienceOn
6 Ma, Y., Yang, Y., Wang, F., Wei, Q. and Qin, H. (2014) Hippo-YAP signaling pathway: A new paradigm for cancer therapy. Int. J. Cancer [Epub ahead of print]
7 Clevers, H. and Nusse, R. (2012) Wnt/beta-catenin signaling and disease. Cell 149, 1192-1205.   DOI   ScienceOn
8 Kim, W., Kim, M. and Jho, E. H. (2013) Wnt/beta-catenin signalling: from plasma membrane to nucleus. Biochem. J. 450, 9-21.   DOI   ScienceOn
9 Massague, J. (2012) TGFbeta signalling in context. Nat. Rev. Mol. Cell Biol. 13, 616-630.   DOI   ScienceOn
10 Varelas, X., Miller, B. W., Sopko, R., Song, S., Gregorieff, A., Fellouse, F. A., Sakuma, R., Pawson, T., Hunziker, W., McNeill, H., Wrana, J. L. and Attisano, L. (2010) The Hippo pathway regulates Wnt/beta-catenin signaling. Dev. Cell 18, 579-591.   DOI   ScienceOn
11 Azzolin, L., Zanconato, F., Bresolin, S., Forcato, M., Basso, G., Bicciato, S., Cordenonsi, M. and Piccolo, S. (2012) Role of TAZ as mediator of Wnt signaling. Cell 151, 1443-1456.   DOI   ScienceOn
12 Azzolin, L., Panciera, T., Soligo, S., Enzo, E., Bicciato, S., Dupont, S., Bresolin, S., Frasson, C., Basso, G., Guzzardo, V., Fassina, A., Cordenonsi, M. and Piccolo, S. (2014) YAP/TAZ Incorporation in the beta-Catenin Destruction Complex Orchestrates the Wnt Response. Cell 158, 157-170.   DOI   ScienceOn
13 Beyer, T. A., Weiss, A., Khomchuk, Y., Huang, K., Ogunjimi, A. A., Varelas, X. and Wrana, J. L. (2013) Switch enhancers interpret TGF-beta and Hippo signaling to control cell fate in human embryonic stem cells. Cell Rep. 5, 1611-1624.   DOI   ScienceOn
14 Fernandez, L. A., Northcott, P. A., Dalton, J., Fraga, C., Ellison, D., Angers, S., Taylor, M. D. and Kenney, A. M. (2009) YAP1 is amplified and up-regulated in hedgehog- associated medulloblastomas and mediates Sonic hedgehog-driven neural precursor proliferation. Genes Dev. 23, 2729-2741.   DOI   ScienceOn
15 Fujii, M., Toyoda, T., Nakanishi, H., Yatabe, Y., Sato, A., Matsudaira, Y., Ito, H., Murakami, H., Kondo, Y., Kondo, E., Hida, T., Tsujimura, T., Osada, H. and Sekido, Y. (2012) TGF-beta synergizes with defects in the Hippo pathway to stimulate human malignant mesothelioma growth. J. Exp. Med. 209, 479-494.   DOI
16 Attisano, L. and Wrana, J. L. (2013) Signal integration in TGF-beta, WNT, and Hippo pathways. F1000Prime Rep. 5, 17.
17 Yu, F. X., Zhao, B., Panupinthu, N., Jewell, J. L., Lian, I., Wang, L. H., Zhao, J., Yuan, H., Tumaneng, K., Li, H., Fu, X. D., Mills, G. B. and Guan, K. L. (2012) Regulation of the Hippo-YAP pathway by G-protein-coupled receptor signaling. Cell 150, 780-791.   DOI   ScienceOn
18 Regimbald-Dumas, Y. and He, X. (2011) Wnt signalling: What The X@# is WTX? EMBO J. 30, 1415-1417.   DOI   ScienceOn
19 MacDonald, B. T., Tamai, K. and He, X. (2009) Wnt/beta- catenin signaling: components, mechanisms, and diseases. Dev. Cell 17, 9-26.   DOI   ScienceOn
20 Gomez-Orte, E., Saenz-Narciso, B., Moreno, S. and Cabello, J. (2013) Multiple functions of the noncanonical Wnt pathway. Trends. Genet. 29, 545-553.   DOI   ScienceOn
21 Willert, K., Brown, J. D., Danenberg, E., Duncan, A. W., Weissman, I. L., Reya, T., Yates, J. R., 3rd and Nusse, R. (2003) Wnt proteins are lipid-modified and can act as stem cell growth factors. Nature 423, 448-452.   DOI   ScienceOn
22 Sugimura, R. and Li, L. (2010) Noncanonical Wnt signaling in vertebrate development, stem cells, and diseases. Birth Defects Res. C. Embryo Today. 90, 243-256.   DOI   ScienceOn
23 Wang, Y. (2009) Wnt/Planar cell polarity signaling: a new paradigm for cancer therapy. Mol. Cancer Ther. 8, 2103-2109.
24 Willert, K. and Nusse, R. (2012) Wnt proteins. Cold Spring Harb Perspect Biol. 4, a007864.
25 Kim, S. E., Huang, H., Zhao, M., Zhang, X., Zhang, A., Semonov, M. V., MacDonald, B. T., Zhang, X., Garcia Abreu, J., Peng, L. and He, X. (2013) Wnt stabilization of beta-catenin reveals principles for morphogen receptor- scaffold assemblies. Science 340, 867-870.   DOI   ScienceOn
26 Moya, I. M. and Halder, G. (2014) Discovering the Hippo pathway protein-protein interactome. Cell Res. 24, 137-138.   DOI   ScienceOn
27 Johnson, R. and Halder, G. (2014) The two faces of Hippo: targeting the Hippo pathway for regenerative medicine and cancer treatment. Nat. Rev. Drug. Discov. 13, 63-79.
28 Varelas, X., Samavarchi-Tehrani, P., Narimatsu, M., Weiss, A., Cockburn, K., Larsen, B. G., Rossant, J. and Wrana, J. L. (2010) The Crumbs complex couples cell density sensing to Hippo-dependent control of the TGF-beta-SMAD pathway. Dev. Cell 19, 831-844.   DOI   ScienceOn
29 Yu, J., Zheng, Y., Dong, J., Klusza, S., Deng, W. M. and Pan, D. (2010) Kibra functions as a tumor suppressor protein that regulates Hippo signaling in conjunction with Merlin and Expanded. Dev. Cell 18, 288-299.   DOI   ScienceOn
30 Yin, F., Yu, J., Zheng, Y., Chen, Q., Zhang, N. and Pan, D. (2013) Spatial organization of Hippo signaling at the plasma membrane mediated by the tumor suppressor Merlin/NF2. Cell 154, 1342-1355.   DOI   ScienceOn
31 Zhang, N., Bai, H., David, K. K., Dong, J., Zheng, Y., Cai, J., Giovannini, M., Liu, P., Anders, R. A. and Pan, D. (2010) The Merlin/NF2 tumor suppressor functions through the YAP oncoprotein to regulate tissue homeostasis in mammals. Dev. Cell 19, 27-38.   DOI   ScienceOn
32 Zhao, B., Wei, X., Li, W., Udan, R. S., Yang, Q., Kim, J., Xie, J., Ikenoue, T., Yu, J., Li, L., Zheng, P., Ye, K., Chinnaiyan, A., Halder, G., Lai, Z. C. and Guan, K. L. (2007) Inactivation of YAP oncoprotein by the Hippo pathway is involved in cell contact inhibition and tissue growth control. Genes Dev. 21, 2747-2761.   DOI   ScienceOn
33 Zhao, B., Li, L., Tumaneng, K., Wang, C. Y. and Guan, K. L. (2010) A coordinated phosphorylation by Lats and CK1 regulates YAP stability through SCF (beta-TRCP). Genes Dev. 24, 72-85.   DOI   ScienceOn
34 Oh, H. and Irvine, K. D. (2009) In vivo analysis of Yorkie phosphorylation sites. Oncogene 28, 1916-1927.   DOI   ScienceOn
35 Huang, J., Wu, S., Barrera, J., Matthews, K. and Pan, D. (2005) The Hippo signaling pathway coordinately regulates cell proliferation and apoptosis by inactivating Yorkie, the Drosophila Homolog of YAP. Cell 122, 421-434.   DOI   ScienceOn
36 Thompson, B. J. and Cohen, S. M. (2006) The Hippo pathway regulates the bantam microRNA to control cell proliferation and apoptosis in Drosophila. Cell 126, 767-774.   DOI   ScienceOn
37 Nolo, R., Morrison, C. M., Tao, C., Zhang, X. and Halder, G. (2006) The bantam microRNA is a target of the hippo tumor-suppressor pathway. Curr. Biol. 16, 1895-1904.   DOI   ScienceOn
38 Neto-Silva, R. M., de Beco, S. and Johnston, L. A. (2010) Evidence for a growth-stabilizing regulatory feedback mechanism between Myc and Yorkie, the Drosophila homolog of Yap. Dev. Cell 19, 507-520.   DOI   ScienceOn
39 Tapon, N., Harvey, K. F., Bell, D. W., Wahrer, D. C., Schiripo, T. A., Haber, D. and Hariharan, I. K. (2002) salvador Promotes both cell cycle exit and apoptosis in Drosophila and is mutated in human cancer cell lines. Cell 110, 467-478.   DOI   ScienceOn
40 Nelson, M. A., Reynolds, S. H., Rao, U. N., Goulet, A. C., Feng, Y., Beas, A., Honchak, B., Averill, J., Lowry, D. T., Senft, J. R., Jefferson, A. M., Johnson, R. C. and Sargent, L. M. (2006) Increased gene copy number of the transcription factor E2F1 in malignant melanoma. Cancer Biol. Ther. 5, 407-412.   DOI
41 Genevet, A., Wehr, M. C., Brain, R., Thompson, B. J. and Tapon, N. (2010) Kibra is a regulator of the Salvador/ Warts/Hippo signaling network. Dev. Cell 18, 300-308.   DOI   ScienceOn
42 Genevet, A. and Tapon, N. (2011) The Hippo pathway and apico-basal cell polarity. Biochem. J. 436, 213-224.   DOI   ScienceOn
43 Makita, R., Uchijima, Y., Nishiyama, K., Amano, T., Chen, Q., Takeuchi, T., Mitani, A., Nagase, T., Yatomi, Y., Aburatani, H., Nakagawa, O., Small, E. V., Cobo-Stark, P., Igarashi, P., Murakami, M., Tominaga, J., Sato, T., Asano, T., Kurihara, Y. and Kurihara, H. (2008) Multiple renal cysts, urinary concentration defects, and pulmonary emphysematous changes in mice lacking TAZ. Am. J. Physiol. Renal. Physiol. 294, F542-553.   DOI   ScienceOn
44 Heallen, T., Zhang, M., Wang, J., Bonilla-Claudio, M., Klysik, E., Johnson, R. L. and Martin, J. F. (2011) Hippo pathway inhibits Wnt signaling to restrain cardiomyocyte proliferation and heart size. Science 332, 458-461.   DOI   ScienceOn
45 Badouel, C., Gardano, L., Amin, N., Garg, A., Rosenfeld, R., Le Bihan, T. and McNeill, H. (2009) The FERM-domain protein Expanded regulates Hippo pathway activity via direct interactions with the transcriptional activator Yorkie. Dev. Cell 16, 411-420.   DOI   ScienceOn
46 Imajo, M., Miyatake, K., Iimura, A., Miyamoto, A. and Nishida, E. (2012) A molecular mechanism that links Hippo signalling to the inhibition of Wnt/beta-catenin signalling. EMBO J. 31, 1109-1122.   DOI
47 Sugimura, R., He, X. C., Venkatraman, A., Arai, F., Box, A., Semerad, C., Haug, J. S., Peng, L., Zhong, X. B., Suda, T. and Li, L. (2012) Noncanonical Wnt signaling maintains hematopoietic stem cells in the niche. Cell 150, 351-365.   DOI   ScienceOn
48 Li, V. S., Ng, S. S., Boersema, P. J., Low, T. Y., Karthaus, W. R., Gerlach, J. P., Mohammed, S., Heck, A. J., Maurice, M. M., Mahmoudi, T. and Clevers, H. (2012) Wnt signaling through inhibition of beta-catenin degradation in an intact Axin1 complex. Cell 149, 1245-1256.   DOI   ScienceOn