• 제목/요약/키워드: Bayesian Parametric Estimation

검색결과 15건 처리시간 0.019초

포아송 실행시간 모형에 의존한 소프트웨어 최적방출시기에 대한 베이지안 접근 방법에 대한 연구 (The Bayesian Approach of Software Optimal Release Time Based on Log Poisson Execution Time Model)

  • 김희철;신현철
    • 한국컴퓨터정보학회논문지
    • /
    • 제14권7호
    • /
    • pp.1-8
    • /
    • 2009
  • 본 연구에서는 소프트웨어 제품을 개발하여 테스팅을 거친 후 사용자에게 인도하는 시기를 결정하는 방출문제에 대하여 연구하였다. 따라서 최적 소프트웨어 방출 정책은 소프트웨어 요구 신뢰도를 만족시키고 소프트웨어 개발 및 유지 총비용을 최소화 시키는 정책을 수용해야 한다. 본 논문에서는 로그포아송 실행시간모형에 대하여 베이지안 모수 추정법(마코브체인 몬테칼로(MCMC) 기법 중에 하나인 깁스 샘플링과 메트로폴리스 알고리즘을 이용한 근사기법)이 사용되었다. 본 논문의 수치적인 예에서는 Musa의 T1 자료를 적용하여 최우수추정법과 베이지안 모수 추정과의 관계를 빅교하고 또한 최적 방출시기를 추정하였다.

모수, 비모수, 베이지안 출산율 모형을 활용한 합계출산율 예측과 비교 (A comparison and prediction of total fertility rate using parametric, non-parametric, and Bayesian model)

  • 오진호
    • 응용통계연구
    • /
    • 제31권6호
    • /
    • pp.677-692
    • /
    • 2018
  • 최근 2017년 우리나라 합계출산율은 1.05명로 2005년 1.08명 수준으로 회귀하는 현상을 보이고 있다. 1.05명은 인구대체선(2.1명), 안전선(1.5명)과도 거리가 먼 초저출산 수준이고 마치 초저출산 덫에 빠질 우려가 있다. 이에 합계출산율의 합리적인 예측과 이를 통한 출산정책에 유용한 자료를 제공하는 것은 그 어느 때 보다도 중요하다. 그 동안 다양한 통계적 방법으로 합계출산율 추이를 예측하였는데, 데이터 완비성이 높고 품질이 좋은 경우 모형 접근인 모수적 방법, 데이터 추이가 단절되거나 변동이 심한 경우 평활과 가중치를 적용한 비모수적 방법, 데이터 부족과 품질 등으로 선진국의 출산율 3단계 전이현상을 참고하여 이들의 사전분포를 활용하는 베이지안 방법 등이 적용되어 왔다. 본 연구는 최근 변동이 심한 우리나라 출산율에 모수, 비모수, 그리고 베이지안 방법을 적용하여 추정과 예측을 실시하고 도출된 결과 비교를 통해 적합성과 타당성 측면에서 어떤 방법이 합리적인지 모색하고자 한다. 분석결과 합계출산율 예측값 순위는 통계청 합계출산율이 가장 높고, 베이지안, 모수, 비모수 순으로 나타났다. 2017년 TFR 1.05명 수준을 감안할 때 모수, 비모수모형으로 도출된 합계출산율 예측값이 합리적이다. 또한 출산율 자료완비성이 높고 품질이 우수할 경우 계산 효율성과 적합도 관점에서 모수적 추정과 예측 접근 방법이 타 방법보다 우수한 것으로 도출되었다.

Bayesian Estimation for Skew Normal Distributions Using Data Augmentation

  • Kim Hea-Jung
    • Communications for Statistical Applications and Methods
    • /
    • 제12권2호
    • /
    • pp.323-333
    • /
    • 2005
  • In this paper, we develop a MCMC method for estimating the skew normal distributions. The method utilizing the data augmentation technique gives a simple way of inferring the distribution where fully parametric frequentist approaches are not available for small to moderate sample cases. Necessary theories involved in the method and computation are provided. Two numerical examples are given to demonstrate the performance of the method.

Bayesian Analysis for a Functional Regression Model with Truncated Errors in Variables

  • Kim, Hea-Jung
    • Journal of the Korean Statistical Society
    • /
    • 제31권1호
    • /
    • pp.77-91
    • /
    • 2002
  • This paper considers a functional regression model with truncated errors in explanatory variables. We show that the ordinary least squares (OLS) estimators produce bias in regression parameter estimates under misspecified models with ignored errors in the explanatory variable measurements, and then propose methods for analyzing the functional model. Fully parametric frequentist approaches for analyzing the model are intractable and thus Bayesian methods are pursued using a Markov chain Monte Carlo (MCMC) sampling based approach. Necessary theories involved in modeling and computation are provided. Finally, a simulation study is given to illustrate and examine the proposed methods.

Bayesian 방법에 의한 잡음감소 방법에 관한 연구 (Wavelet Denoising based on a Bayesian Approach)

  • 이문직;정진현
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 하계학술대회 논문집 G
    • /
    • pp.2956-2958
    • /
    • 1999
  • The classical solution to the noise removal problem is the Wiener filter, which utilizes the second-order statistics of the Fourier decomposition. We discuss a Bayesian formalism which gives rise to a type of wavelet threshold estimation in non-parametric regression. A prior distribution is imposed on the wavelet coefficients of the unknown response function, designed to capture the sparseness of wavelet expansion common to most application. For the prior specified, the posterior median yields a thresholding procedure

  • PDF

Inverted exponentiated Weibull distribution with applications to lifetime data

  • Lee, Seunghyung;Noh, Yunhwan;Chung, Younshik
    • Communications for Statistical Applications and Methods
    • /
    • 제24권3호
    • /
    • pp.227-240
    • /
    • 2017
  • In this paper, we introduce the inverted exponentiated Weibull (IEW) distribution which contains exponentiated inverted Weibull distribution, inverse Weibull (IW) distribution, and inverted exponentiated distribution as submodels. The proposed distribution is obtained by the inverse form of the exponentiated Weibull distribution. In particular, we explain that the proposed distribution can be interpreted by Marshall and Olkin's book (Lifetime Distributions: Structure of Non-parametric, Semiparametric, and Parametric Families, 2007, Springer) idea. We derive the cumulative distribution function and hazard function and calculate expression for its moment. The hazard function of the IEW distribution can be decreasing, increasing or bathtub-shaped. The maximum likelihood estimation (MLE) is obtained. Then we show the existence and uniqueness of MLE. We can also obtain the Bayesian estimation by using the Gibbs sampler with the Metropolis-Hastings algorithm. We also give applications with a simulated data set and two real data set to show the flexibility of the IEW distribution. Finally, conclusions are mentioned.

Investigation of modal identification and modal identifiability of a cable-stayed bridge with Bayesian framework

  • Kuok, Sin-Chi;Yuen, Ka-Veng
    • Smart Structures and Systems
    • /
    • 제17권3호
    • /
    • pp.445-470
    • /
    • 2016
  • In this study, the Bayesian probabilistic framework is investigated for modal identification and modal identifiability based on the field measurements provided in the structural health monitoring benchmark problem of an instrumented cable-stayed bridge named Ting Kau Bridge (TKB). The comprehensive structural health monitoring system on the cable-stayed TKB has been operated for more than ten years and it is recognized as one of the best test-beds with readily available field measurements. The benchmark problem of the cable-stayed bridge is established to stimulate investigations on modal identifiability and the present paper addresses this benchmark problem from the Bayesian prospective. In contrast to deterministic approaches, an appealing feature of the Bayesian approach is that not only the optimal values of the modal parameters can be obtained but also the associated estimation uncertainty can be quantified in the form of probability distribution. The uncertainty quantification provides necessary information to evaluate the reliability of parametric identification results as well as modal identifiability. Herein, the Bayesian spectral density approach is conducted for output-only modal identification and the Bayesian model class selection approach is used to evaluate the significance of different modes in modal identification. Detailed analysis on the modal identification and modal identifiability based on the measurements of the bridge will be presented. Moreover, the advantages and potentials of Bayesian probabilistic framework on structural health monitoring will be discussed.

Copula-based common cause failure models with Bayesian inferences

  • Jin, Kyungho;Son, Kibeom;Heo, Gyunyoung
    • Nuclear Engineering and Technology
    • /
    • 제53권2호
    • /
    • pp.357-367
    • /
    • 2021
  • In general, common cause failures (CCFs) have been modeled with the assumption that components within the same group are symmetric. This assumption reduces the number of parameters required for the CCF probability estimation and allows us to use a parametric model, such as the alpha factor model. Although there are various asymmetric conditions in nuclear power plants (NPPs) to be addressed, the traditional CCF models are limited to symmetric conditions. Therefore, this paper proposes the copulabased CCF model to deal with asymmetric as well as symmetric CCFs. Once a joint distribution between the components is constructed using copulas, the proposed model is able to provide the probability of common cause basic events (CCBEs) by formulating a system of equations without symmetry assumptions. In addition, Bayesian inferences for the parameters of the marginal and copula distributions are introduced and Markov Chain Monte Carlo (MCMC) algorithms are employed to sample from the posterior distribution. Three example cases using simulated data, including asymmetry conditions in total failure probabilities and/or dependencies, are illustrated. Consequently, the copula-based CCF model provides appropriate estimates of CCFs for asymmetric conditions. This paper also discusses the limitations and notes on the proposed method.

비선형 상태공간 모델을 위한 Point-Mass Filter 연구 (A Study on the Point-Mass Filter for Nonlinear State-Space Models)

  • 최영권
    • 산업기술연구
    • /
    • 제43권1호
    • /
    • pp.57-62
    • /
    • 2023
  • In this review, we introduce the non-parametric Bayesian filtering algorithm known as the point-mass filter (PMF) and discuss recent studies related to it. PMF realizes Bayesian filtering by placing a deterministic grid on the state space and calculating the probability density at each grid point. PMF is known for its robustness and high accuracy compared to other nonparametric Bayesian filtering algorithms due to its uniform sampling. However, a drawback of PMF is its inherently high computational complexity in the prediction phase. In this review, we aim to understand the principles of the PMF algorithm and the reasons for the high computational complexity, and summarize recent research efforts to overcome this challenge. We hope that this review contributes to encouraging the consideration of PMF applications for various systems.

On Estimation of HPD Interval for the Generalized Variance Using a Weighted Monte Carlo Method

  • Kim, Hea-Jung
    • Communications for Statistical Applications and Methods
    • /
    • 제9권2호
    • /
    • pp.305-313
    • /
    • 2002
  • Regarding to inference about a scalar measure of internal scatter of Ρ-variate normal population, this paper considers an interval estimation of the generalized variance, │$\Sigma$│. Due to complicate sampling distribution, fully parametric frequentist approach for the interval estimation is not available and thus Bayesian method is pursued to calculate the highest probability density (HPD) interval for the generalized variance. It is seen that the marginal posterior distribution of the generalized variance is intractable, and hence a weighted Monte Carlo method, a variant of Chen and Shao (1999) method, is developed to calculate the HPD interval of the generalized variance. Necessary theories involved in the method and computation are provided. Finally, a simulation study is given to illustrate and examine the proposed method.