Communications for Statistical Applications and Methods hitps://doi.org/10.5351/CSAM.2017.24.3.227
2017, Vol. 24, No. 3, 227-240 Print ISSN 2287-7843 / Online ISSN 2383-4757

Inverted exponentiated Weibull distribution with

applications to lifetime data

Seunghyung Lee“, Yunhwan Noh¢, Younshik Chung!-“

“Department of Statistics, Pusan National University, Korea

Abstract

In this paper, we introduce the inverted exponentiated Weibull (IEW) distribution which contains exponen-
tiated inverted Weibull distribution, inverse Weibull (IW) distribution, and inverted exponentiated distribution as
submodels. The proposed distribution is obtained by the inverse form of the exponentiated Weibull distribution.
In particular, we explain that the proposed distribution can be interpreted by Marshall and Olkin’s book (Lifetime
Distributions: Structure of Non-parametric, Semiparametric, and Parametric Families, 2007, Springer) idea. We
derive the cumulative distribution function and hazard function and calculate expression for its moment. The
hazard function of the IEW distribution can be decreasing, increasing or bathtub-shaped. The maximum likeli-
hood estimation (MLE) is obtained. Then we show the existence and uniqueness of MLE. We can also obtain
the Bayesian estimation by using the Gibbs sampler with the Metropolis-Hastings algorithm. We also give ap-
plications with a simulated data set and two real data set to show the flexibility of the IEW distribution. Finally,
conclusions are mentioned.

Keywords: Bayesian estimation, exponential inverted Weibull distribution, inverted exponentiated
Weibull distribution, inverse Weibull distribution, Gibbs sampler, hazard function, maximum likeli-
hood estimate, Metropolis-Hastings algorithm

1. Introduction

Mudholkar and Srivastava (1993) introduced a three-parameter exponentiated Weibull (EW) distribu-
tion as an extension of Weibull distribution. Singh et al. (2002, 2005) investigated Bayes estimators
proposed for three-parameter EW distribution when the available sample is type-II censored. The
Weibull and EW model are widely discussed for survival analysis because of its simplicity and flexi-
ble modelling.

In this paper, we propose a new distribution, referred to as the inverted exponentiated Weibull
(IEW) distribution, which contains exponentiated inverted Weibull (EIW) distributions, inverse Weibull
(IW) distribution, inverted exponentiated distribution, and generalized inverted exponential (GIE) dis-
tribution as special sub-models. If a random variable X has an EW distribution, then ¥ = 1/X is said
to have IEW distribution. In particular, we explain that the proposed distribution can be interpreted
by Marshall and Olkin’s (2007) idea. Bayesian estimation of parameters of IW distribution was previ-
ously investigated by Singh ez al. (2013). The hazard function of IEW distribution can be decreasing,
increasing and bathtub-shaped. Several properties of IEW distribution such as quantiles and moment
are studied. Maximum likelihood estimator (MLE) and Bayesian estimator are obtained. We also
show the existence and uniqueness of MLE.
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The paper is organized as follows. In Section 2, we propose the IEW distribution and demonstrate
the graphs of IEW distribution. In Section 3, we introduce some properties of IEW distribution such
as cumulative distribution function (cdf), survivor function, hazard functions, quantiles, and moments.
In Section 4, we obtain the MLE using the Newton Raphson method and Bayesian estimators using the
Markov chain Monte Carlo (MCMC) method. In particular, we show the existence and uniqueness of
MLE. In Section 5, we compare the performance of MLE and Bayesian estimates based on simulation
studies. In addition, real data applications are performed. Finally, conclusions are mentioned in
Section 6.

2. Inverted exponentiated Weibull (EW) distribution

Suppose that Y has the EW distribution, EW(e, 3, 1) with @ > 0, 8 > 0, and 4 > 0 proposed by

Mudholkar and Srivastava (1993) and its probability density distribution (pdf) and cdf are given by
L5, B D) = aBly™ e (1) 2.1)

and

T = (1-e), 2.2)

respectively. If Y has the EW(«, 8, 1) distribution, then X = 1/Y has the pdf given by

fx () = @B @ e (1= 2.3)

This distribution in (2.3) is called the IEW distribution, denoted by IEW(a, 3, 4). The inverted expo-
nentiated Rayleigh distribution proposed by Rastogi and Tripathi (2014) is a special case of the IEW
distribution for @ = 2. The IEW distribution also contains as sub-models EIW distribution for § = 1
proposed by Flaih et al. (2012), GIE distribution proposed by Krishna and Kumar (2013) for @ = 1
and IW distribution for 8 =1 and A = 1.

Following Marshall and Olkin (2007), we can interpret the IEW(e, 3, 1) in (2.3) as:
Let Giw(x) be the IW distribution given by

Gw (x4, @) = exp [-Ax7¢], x>0, (2.4)
where A > 0 and @ > 0. The corresponding pdf is

giw(x |4, @) = dax™ @D exp [-Ax77]. (2.5)
Marshall and Oklin (2007) pointed out that that the same kind of parameter does not expand the family
of the distribution function. Then, Elbatal ef al. (2016) mentioned that the resilience parameter can
be used for the IW model since IW is a proportional reversed hazard family. Therefore, we can define
the generalized inverse Weibull (GIW) distribution by applying the power of 8 > 0 to Grw(x) in (2.4),
say

Gaw(x) = 1 — (1 = Gw(x)?
1-(1-e*f, x>0, (2.6)
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Figure 1: Probability density distribution of the inverse exponentiated Weibull distribution for selected values of
the parameters.

which is the proportional hazard model, denoted by GIW(«a, 3, 1). Hence the corresponding pdf of
GIW distribution is given by

gew(x) = Baiw(x) (1 = Grw ()’
= @D 1T ks, 2.7)

This GIW(a, 8, 1) in (2.7) is the same as [IEW(«, 8, 4) distribution in (2.3) that was originally proposed
in this paper. Recently, de Gusmao et al. (2011) have tried to generalize the IW distribution by
introducing the resilience parameter, but, as highlighted by Jones (2012), Gusmao et al. (2012) just
proposed the distribution in (2.3) as the named Lehmann type II IW distribution without mentioning
its properties and estimations.

Recall that the pdf and cumulative distribution of EIW(e, 1) are given by

g(v;a, 1) = ady @ D™ .
and
Gl ) = e, 2.9)

respectively. Figure 1 shows the IEW density for various values of the parameter (o, 5, 1).
If |z] < 1 and k > 0, we have the series representation

( 1)’T(k)
2.10
Zr(k i 10

where I'(+) is the gamma function.
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Expanding (1 — e~ ")*~! as in (2.6), we can write (2.3) as

_ e T
fOxa,B,A) = afax~ @D —
jz_:: re-nj!

—a

(=1)e™

o i 1_,
= Z(—l)fﬂmij)j,g(x; @, 4G+ 1), 2.11)
J=0 '

where g(x; @, A(j + 1)) is defined in (2.4). This means that the pdf of the IEW distribution can be
expressed as an infinite mixture of EIW distribution with parameters @ and A(j + 1). Hence, some
mathematical properties (cdf, moments, percentiles, moment generating function, and factorial mo-
ments) of the IEW distribution can be obtained using (2.7) from the corresponding properties of the
EIW distribution.

3. Properties of the inverse exponentiated Weibull (IEW) distribution
3.1. The distribution and hazard rate function
Let X be distributed to IEW distribution with parameters («, 8, 1) in (2.3), that is,

X ~ [EW(e, 3, 2).
Its cdf is given by
Fo=1-(1-e""f, x>0 3.1)

which was proposed first by de Gusmao et al. (2012).
The survivor and hazard functions are

s@=(1-e"Y, x>0, 3.2)

and

afAx e (1 - e_ﬂxﬂ)ﬁ_l
(1 — ey

respectively. The limiting behavior of the hazard rate function given by (3.3) are: lim,, 2(x) = 0 and
lim,_, A(x) = co. We illustrate some of the possible shapes of the hazard function for selected values
of the (a,, ) in Figure 2. These plots show that the hazard rate function of the IEW distribution is
nonmonotone and is very applicable.

h(x) = , (3.3)

3.2. Quantiles and moments
The quantile u(x,) of the IEW distribution follows from (2.8) as

I 1 K
Xy = (Z log (m)) : (34)

In particular, the median is simply calculated as xo5 = [(1/2) log(1/(1 — 0.5%)]7/.
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Figure 2: Hazard rate functions of the inverse exponentiated Weibull distribution for several values of the param-
eters.

Suppose that ¥ ~ EIW(«, 1) in (2.4). Then " moment of Y is given by
r r
E[Y’]:/lwl"(l——), a>r.

[0

Suppose that X ~ EIW(a, 8, 1). Then it follows from (2.11) that the 7 moment of X is given by
e =[x Z( VB s A+ D)
Z(— VB~ A+ D) r(i-2),  asr (3.5)
a
Using (3.5), the moment generating function of the IEW distribution is given by

> x|

r=0

Mx(t) = E

0o 00

r (ﬁ)
Z 2471 OB AU+ ) T(i-2),  asn (3.6)

For its other properties such as mean deviations, Rényi and Shannon entropies, Bonferroni and Lorenz
curves, and order statistics, see Lee (2014).
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4. Estimation
4.1. Maximum likelihood estimation (MLE)

Let x = (xy,...,x,) be a random sample from the IEW distribution in (2.3) with unknown parameter
vector 6 = («, 8, 1)’. Then the log likelihood function ¢ = £(6; x) for 6 is

{7:2[—((1+ Dlogx; — Ax;* + (B - l)log(l —e_’b‘f_”)] +nloga +nlogB+nloga.

The score function U(6) = [(8¢/0), (€/0B), (0€/0A)]T based on a random sample of the IEW distri-
bution in (2.3) has components as:

. n < 4 Ax;7 log xe5"
—_— = - - I i+ Ax; 41 i — -1 , 4.1
da « ; 08 ; N 08X )Z 1 —e " “.1
o n u o
— ==+ > log(l-e™"), (4.2)
BB le

and
ot n n Y n xi—a IOg xief/lx’.‘”
ﬁzz—zxi +(B_I)ZW (43)

i=1

The MLE @ of @ is calculated numerically from the nonlinear equations U(f) = 0. Here, we use the
Newton Raphson method to find 6.

Next, we consider the asymptotic variances and covariances of MLEs. Then the asymptotic vari-
ances of MLEs are given by the inverse of the Fisher information matrix /. Unfortunately, the exact
mathematical expressions for the Fisher information matrix are difficult to obtain. Then the observed
Fisher information matrix J(8) can be used instead of the Fisher information matrix. Therefore, we
make an inference  ~ N(6, J~'(8)) asymptotically where J~'(8) is the observed Hessian matrix eval-
uated at §. So, the asymptotic normality of the MLE can compute the approximate 100(1 — &)%
confidence intervals for the parameters «, 8 and A.

Finally, we consider the existence and uniqueness of the MLEs under some conditions and the
proofs are given in Appendix.

Theorem 1. Let g(a; B, A) denote the function on the right hand side (RHS) of the equation (4.1)
where 3 and A are the true values of the parameters, then, the equation g\(a; 3, 1) = 0 has at least one
root for 8 # 0 and for 8 = 1 the roots lie in the interval [n/((1 — 2) X1, logx;),n/ (X, logx;)], where
x;>land A < 1.

Theorem 2. Let g,(B; @, A) denote the function on the RHS of the equation (4.2) where a and A are
the true values of the parameters, then, the equation g,(83; a, A) = 0 has at least one root and is unique.

Theorem 3. Let g3(A; @, B) denote the function on the RHS of the equation (4.3) where « and B are
the true values of the parameters, then, the equation g3(4; a,8) = 0 has at least one root.
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4.2. Bayesian estimation

Assume that @, 8, and A are independent. Each priors for @, 8, and A are assumed to be independent
gamma distribution as:

mi(a) = %amle’”“, m(B) = %ﬂ“zlebzﬁ, (4.4)
and
2
3() = @A“f‘e*””,

where a; and b; are assumed to be known fori = 1,2, 3.
The joint posterior density for «, 3, and A given the observed data xi, ..., x,, from IEW in (2.3) is
obtained as:
n o o _1
ﬂ(a,ﬁ, Alxg, ..., x,) 1—[ a[g/lxi—w—le—/lxi (] _ e—/hi f X a,al—leblaﬁaz—lebzﬁ/las—]ebsxl' (45)
i=1
Therefore, for Gibbs sampling (Gelfand and Smith, 1990) the full conditional distributions (FCD) are
obtained from (4.5) as:

a(@|BA, X1, ..., Xp) @@+l (bt EL logxi)a p=A XL 27 o ﬁ (1 - e_b‘fﬂ)ﬁ_1 , (4.6)
i=1
aBlad, xi,...,x,) < ﬁ02+’171€7(b272;1:] lug(lfemf))ﬂ, 4.7
and
r(Aa, B, x1,...,%,) o Q=1 p=(bs+ L, 40 ﬁ (1 - e”l"fw)ﬁ_l . (4.8)

i=1

However both FCD of a and A in (4.6) and (4.8) can not be reduced to well-known distributions,
respectively and therefore it is impossible to sample directly by a standard methods. As suggested by
Chib and Greenberg (1995), a hybrid MCMC algorithm is used by a combined Metropolis-Hastings
sampling with Gibbs sampler using the suitable proposal distributions. To generate samples of @ and
A from (4.6) and (4.8), G(n + a1, —(by + X, log x;)) and G(n + a3, —(b3 + X, x{")) distributions are
employed as their proposal distributions, respectively where G(a, b) denotes the gamma distribution
with the mean a/b. The hybrid MCMC algorithm is working as:

Step 1. Start with initial point (3©, 2®).
Step 2. Set j = 1.

Step 3. Using Metropolis-Hastings algorithm, generate o' from m(a|8Y~", 2=V x,..., x,) in (4.6)
with gamma proposal distribution, G(n + a;, —(b; + X, log x;)).

Step 4. Generate 8 from G(n + az, by — Y log(1 — e’ Dt )) in (4.7).



234 Seunghyung Lee, Yunhwan Noh, Younshik Chung

Step 5. Using Metropolis-Hastings algorithm, generate A from n(a|8"”, AV, xy, ..., x,,) in (4.8) with

gamma proposal distribution, G(n + a3, —(b3 + X_ x{)).

Step 6. Set j=j+1.
Step 7. Repeat Steps 3-7, N times.

For example, the posterior mean of « is then approximated by
&=—" a", (4.9)

where S is the burn-in period. Here, we decide the convergence to have been reached after S iteratins
of and MCMC algorithm have been performed. Then the observations o'V, a®, ..., o) are discarded
and @®,§ + 1 < i < T are worked which are regarded as an independent sample from the stationary
distribution of the Markov chain which is typically the posterior distribution.

5. Applications
5.1. Simulation study

In this study, we compare the performances of MLEs using the Newton Raphson method and Bayesian
estimates using the MCMC method. To explain these, we conduct a simulation study using random
sampling numbers generated from IEW (e, §8, 1) distribution with @ = 2.5, = 2.5, and 1 = 2.5. We
then use n = 30 as sample size. Assume that the number of repetition is 10,000; subsequently, we
calculate their means and standard errors of MLEs of each parameter. Therefore, we could calculate
the corresponding root mean square errors (RMSE) of MLEs as:

1 10000 N 2
RMSE = 4| 7o ; (69 —a),

where #® denotes the MLE of the parameter 6 at the i repetition. Next, for Bayesian estimations,
each prior for a, 8, and A is assumed to be gamma distribution in (4.4) with parameters a; = a, = a3z =
5 and b; = b, = b3 = 2 since their mean values in simulation are assumed to be 2.5. After checking
the convergence, the number of iterations of Gibbs sampling and Metropolis-Hastings algorithm to be
needed are 1,000, say T — S in (4.9).

In Table 1, LCI and CP denote the length of 95% confidence intervals and its coverage probability
of each parameters, respectively. LCI in Bayesian estimates means the length of highest posterior
density (HPD) intervals. SE in parenthesis also stands for the standard error. For the simulated data
from IEW model as above, All Bayesian estimates are better than the corresponding MLEs of each
parameters in the senses of SE, RMSE, and CP. But, in the values of LCI, the lengths of confidence
intervals of @ and A was shorter than their corresponding HPD intervals.

Next, we compared IEW model with the competing models, such as EIW, EW, IW, transmuted
Weibull (TW), and transmuted generalized exponential (TGE) models. TW distribution and TGE
distribution are extended from the Weibull distribution and the generalized exponential distribution to
analyze more complex data given by

a—-1 o "
Frw(xla, B, ) = %(;) () [1 A+ 22078 (5.1)
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Table 1: MLEs and Bayesian estimates

Parameter Types Eszlsrréz;tes RMSE LCI CP

2.5861

MLEs (0.3973) 0.1651 0.8645 0.7095
a

Bayesian estimates ((2)224218) 0.002 1.8028 0.9920

2.6482
MLEs (0.3844) 0.1696 3.1052 0.9738

B i ) 2.3613
Bayesian estimates (0.2227) 0.005 2.6737 0.9920

2.5886
MLEs (0.4323) 0.1945 0.6819 0.5418

4 o 24310
Bayesian estimates (0.6227) 0.001 1.5288 0.9920

MLE = maximum likelihood estimation; SE = standard error; RMSE = root mean square error; LCI = length of 95%
confidence interval; CP = coverage probability.

Table 2: Model comparison using AIC and BIC

Model In (L) AIC BIC
Inverted exponentiated Weibull —21.5838 45.4677 49.9701
Exponentiated inverted Weibull —22.4673 46.9348 51.7371
Exponentiated Weibull —47.7840 97.5681 102.3704
Inverse Weibull -25.9174 53.8347 58.6371
Transmuted Weibull —-602.907 1207.8140 1212.6160
Transmuted generalized exponential —-123.3269 248.6538 253.4562

AIC = Akaike information criterion; BIC = Bayesian information criterion.
and

Frop@la.B.) = aB(1— ™) P [1+a-24(1- ™)), (5.2)

where « is shape, S is scale, A is transmuting parameter, respectively. Khan et al. (2015, 2017)
investigated TW and TGE distributions, respectively. For the model selection, the criteria used are
Akaike information criterion (AIC) and Bayesian information criterion (BIC) as:

AIC = 2k - 21n(L) and BIC = —21In(L) + kIn(n),

where k is the number of parameters in the model and L is the maximized value of the likelihood
function for the model. The AIC is the measure of the relative quality of a statistical model for a given
set of data. BIC is also a criterion for model selection among a finite set of models and is closely
related to the AIC. In Table 2, the IEW model is more appropriate in terms of AIC and BIC since the
values of AIC and BIC of the IEW model were smallest among the competing models. Therefore, we
can conclude that the performance of the IEW model is better.

5.2. Real data analysis

In this section, we demonstrate the superiority of the proposed distribution IEW (e, 8, 1) using two
real data sets in reliability engineering to select the best model among the competing models.

The first data arose in tests on the endurance of deep groove ball bearings which is from Lawless
(1982, p. 288). They were discussed by Gupta and Kundu (1999) about Generalized exponential
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Figure 3: The TTT plot for the endurance of deep groove ball bearings data. TTT = total time on test.

Table 3: MLEs and LCIs of the model parameters for the endurance of deep groove ball bearings data, the AIC,
and BIC measures

Model a (LCI) B (LCI) A (LCI) AIC BIC
Inverted exponentiated Weibull 0.3350 (0.070) 218.2934 (21.0560) 28.8637 (7.035)  231.9890 235.3950
Exponentiated inverted Weibull 1.8344 (0.223) 1.0000 1240.4882 (99.102) 237.5640 240.9710
Exponentiated Weibull 1.3695 (0.133) 0.0007 (4.2350) 0.0015 (10.235) 527.6103 531.8813
Inverse Weibull 0.3247 (0.229) 1.0000 1.0000 320.7850 323.0560
Transmuted Weibull 3.5451 (2.901) 42127.5907 (0.2340)  12707.2208 (30.284) 760.2790 763.6860

Transmuted generalized exponential 0.4503 (0.368) 287.1737 (1.9345) 2153.0926 (10.347) 310.3330 306.9270

MLE = maximum likelihood estimation; LCI = length of 95% confidence interval; AIC = Akaike information criterion;
BIC = Bayesian information criterion.

distribution. The data set is:

17.88, 28.92, 33.00, 41.52, 42.12, 45.60, 4848, 51.84, 5196, 54.12, 55.56, 67.80,
68.64, 68.64, 68.88, 84.12, 93.12, 98.64, 105.12, 105.84, 127.92, 128.04, 173.40.

Figure 3 provides a total time on test (TTT) plot for the durability of deep groove ball bearings
data. Because the plot is concave and lying above the line, it means that its distribution may have
an increasing hazard rate. Therefore it can be properly accommodated by a IEW(e, 3, 1) model with
increasing failure rate. For comparison purposes, we consider fitting other competing distributions
such as EIW, EW, IW, TW, and TGE distribution. The MLEs of the parameters, LCIs, AIC, and BIC
for the fitted models are displayed in Table 3.

Table 3 says that IEW model is better than other models by comparing the values of AIC and BIC.
As a result of comparing the LCI of the parameters, among the confidence intervals for @ and A, the
LCI of the IEW model is the shortest. And among the LCI for 8, the LCI of the TGE model is the
shortest. We also perform likelihood ratio test (LRT) of Hy : 8 = 1 (EIW model) vs H; : 8 # 1 (IEW
model). The LR statistic for testing the hypotheses Hy vs. H; is 7.576. LR statistic is larger than 6.634
which is critical region for significance level 0.01. So we reject the null hypotheses Hy : g = 1 (EIW
model). The plots of the fitted IEW, EIW, EW, IW, TW, and TGE densities are shown in Figure 4.

The second data set is from Birnbaum and Saunders (1969) on the fatigue life of 6061-T6 alu-
minum coupons cut parallel to the direction of rolling and oscillated at 18 cycles per second. The data
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Figure 4: Fitted IEW, EIW, EW, IW, TW, and TGE densities for the endurance of deep groove ball bearings data.
IEW = inverted exponentiated Weibull; EIW = exponentiated inverted Weibull; EW = exponentiated Weibull;
IW = inverse Weibull; TW = transmuted Weibull; TGE = transmuted generalized exponential.

set is:

70, 90, 96, 97, 99, 100, 103, 104, 104, 105, 107, 108, 108, 108, 109, 109,
112, 112, 113, 114, 114, 114, 116, 119, 120, 120, 120, 121, 121, 123, 124, 124,
124, 124, 124, 128, 128, 129, 129, 130, 130, 130, 131, 131, 131, 131, 131, 132,
132, 132, 133, 134, 134, 134, 134, 136, 136, 137, 138, 138, 138, 139, 139, 141,
141, 142, 142, 142, 142, 142, 142, 144, 144, 145, 146, 148, 148, 149, 151, 151,
152, 155, 156, 157, 157, 157, 157, 158, 159, 162, 163, 163, 164, 166, 166, 168,
170, 174, 201, 212.

Figure 5 provides a TTT plot for the fatigue life of 6061-T6 data. As similar to Figure 3, Figure 5
also shows that its plot is concave and lying above the line; therefore, and so, its distribution may have
an increasing hazard rate. It can also be properly accommodated by a IEW model with an increasing
failure rate.

Table 4 displays the MLEs and its LCIs of the parameters as well as the values of AIC and BIC
for the fitted models. Table 4 says that [IEW model is better than other models by comparing AIC and
BIC. As a result of comparing the LClIs of the parameters, among the LClIs for «, the LCI of the [IEW
model is the shortest; in addition, the LCIs for § and A, the LCI of the EW model is the shortest. We
perform LRT of Hy : 8 = 1 (EIW model) vs. H; : 8 # 1 (IEW model). The LR statistic for testing
the hypotheses Hy vs. H; is 27.509. LR statistic is larger than 6.634 which is a critical region for
significance level 0.01. So we reject the null hypotheses Hy : 8 = 1 (EIW model). The plots of the
fitted IEW, EIW, EW, IW, TW, and TGE densities are shown in Figure 6.
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Figure 5: The TTT plot for the 6061-T6 data. TTT = total time on test.

Table 4: MLEs of the model parameters for 6061-T6 data, the AIC and BIC measures

Model a (LCI) B (LCI) A (LCI) AIC BIC
Inverted exponentiated Weibull 0.90930 (0.035) 262.5843 (10.3541)  501.0968 (17.427)  920.356  928.172
Exponentiated inverted Weibull 5.04270 (0.074) 1.0000 3146.4000 (32.120)  947.865  955.681
Exponentiated Weibull 1.06400 (0.037)  50.2247 (10.006) 230.2991 (23.015)  237.564 1240.971
Inverse Weibull 0.27650 (0.082) 1.0000 1.0000 1559.361 1564.572
Transmuted Weibull 3.31890 (0.731)  53.8542 (1.274) 2094.2543 (27.538) 0 0

Transmuted generalized exponential 0.59138 (0.374) 576.9850 (1.637) 5120.2012 (22.052) 1324.593 1317.336

MLE = maximum likelihood estimation; LCI = length of 95% confidence interval; AIC = Akaike information criterion;
BIC = Bayesian information criterion.

6. Conclusion

We propose a new model which is IEW distribution that extends EW distribution introduced by Mud-
holkar et al. (1993). Some properties are introduced and plots of pdf and hazard functions are dis-
played to show the flexibility of IEW distribution. We propose MLEs using the Newton Raphson
method and Bayesian estimation using Gibbs sampler. We present the AIC and BIC to compare the
IEW modes and special sub-models. We also present the use of LR statistics to compare the fit of the
IEW with EIW which is a special sub-model. Finally, we fit the IEW model to two real data sets to
show the flexibility and potential of the IEW distribution.

Appendix: Proof of Theorem

Proof of Theorem 1: Let gi(a; 8, 1) be the RHS of (4.8). For g = 1, let w; = ¥i; Ax;* log x;. Then
limy—o wi = X7, Alog x; and lim,—, w1 = 0, where x; > 1. Therefore,

a—00

gi(a; B3, ) = g —;logxi+w1 > g —;logxi + lim wy,

thus, g1(e; 8, ) > 0if & > n/(X}, log x;).
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Figure 6: Fitted IEW, EIW, EW, IW, TW, and TGE densities for the 6061-T6 data. IEW = inverted exponentiated
Weibull; EIW = exponentiated inverted Weibull; EW = exponentiated Weibull; IW = inverse Weibull; TW =
transmuted Weibull; TGE = transmuted generalized exponential.

On the other side

n

n n )
—Zlogxi+w1 < - —Zlogx,- + lim wy,
— a — a—0
i= i=

gi(@: B, ) =

RI=

hence, gi(a;8,4) < 0if @ < n/((1 —A) X%, logx;). The roots of g;(a;B8,4) = 0 lie in the interval
[n/((1 =) Zi, log x;),n/ (X, log x;)].

For B # 1, limg—0 g1 = o0 and limy—eo g1 = — 21 log x; < 0, where x; > 1, thus, gi(e;8,4) =0
has at least one root. O

Proof of Theorem 2: Let g,(8; a, A) be the RHS of (4.9). Consider that limg_,g g» = oo and limg_, >
= Y, log(1 — e*") < 0. To prove the uniqueness we show that (9g2(8; @, 1))/ = —n/B* < 0.
Since the second derivative is negative, the solution to the first order condition determines the unique
maximizer of the likelihood function, and is the maximum likelihood estimator. O

Proof of Theorem 3: Let g3(58; a, A1) be the RHS of (5.1). lim,_g3(8;a,1) = oo and limg_,. 3
B;a, ) = - X", x; <0. Therefore g3(8; @, 1) = 0 has at least one root. O
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