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a b s t r a c t

In general, common cause failures (CCFs) have been modeled with the assumption that components
within the same group are symmetric. This assumption reduces the number of parameters required for
the CCF probability estimation and allows us to use a parametric model, such as the alpha factor model.
Although there are various asymmetric conditions in nuclear power plants (NPPs) to be addressed, the
traditional CCF models are limited to symmetric conditions. Therefore, this paper proposes the copula-
based CCF model to deal with asymmetric as well as symmetric CCFs. Once a joint distribution between
the components is constructed using copulas, the proposed model is able to provide the probability of
common cause basic events (CCBEs) by formulating a system of equations without symmetry assump-
tions. In addition, Bayesian inferences for the parameters of the marginal and copula distributions are
introduced and Markov Chain Monte Carlo (MCMC) algorithms are employed to sample from the pos-
terior distribution. Three example cases using simulated data, including asymmetry conditions in total
failure probabilities and/or dependencies, are illustrated. Consequently, the copula-based CCF model
provides appropriate estimates of CCFs for asymmetric conditions. This paper also discusses the limi-
tations and notes on the proposed method.
© 2020 Korean Nuclear Society, Published by Elsevier Korea LLC. This is an open access article under the

CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Nuclear power plants (NPPs) employ the concept of redundancy
through functional similarity or identity of components to improve
safety. The failure probability of a redundant system with compo-
nents A and B can be expressed as PðA∩BÞ, and it can be quantified
as PðAÞ,PðBÞ if they are independent. However, quite a few
redundant components in NPPs have dependencies among them
due to functional and environmental root causes or coupling
mechanisms. To evaluate their dependency in probabilistic safety
assessments (PSAs), common cause failures (CCFs) have been
introduced.

A CCF that significantly affects the safety of a redundant system
is a dependent failure in which two or more components fail at the
same time or in a short time due to common causes. There are
various methods to estimate the probability of CCFs. The most
widely used CCF models are based on parametric approaches such
as the alpha factor model (AFM) [1,2]. The alpha parameter for k-
failure indicates the ratio of k-failures in total failures. The proba-
bility of common cause basic events (CCBEs) for k-failures can be
by Elsevier Korea LLC. This is an
evaluated using the alpha factor for k-failure and the total failure
probability of the component. The parametric CCF model assumes
that the components in a common cause component group (CCCG)
are symmetric. In other words, the probability of CCBEs for k-failure
within a CCCG is always the same. This assumption reduces the
number of parameters required for the CCF probability estimation
and allows use of the parametric model.

On the other hand, there are various asymmetric conditions in
NPPs and this complex situation is extended as the scope of PSAs
expands into multiple units of a site. For example, the dependency
of emergency diesel generators (EDGs) in multiple units should be
considered carefully when their symmetry cannot be guaranteed.
In practice, there have been several studies of cases where a sym-
metry assumption is not satisfiable. IAEA TECDOC-648 [2] refers to
the functional, operational, and environmental asymmetric condi-
tions that may occur in NPPs and NUREG/CR-5485 [1] describes the
CCF of component cooling water (CCW) pumps under different
operation modes. Kang et Al [3]. proposed a way to estimate the
probability of asymmetric CCFs by approximately formulating the
CCF, which is decomposed into primary and secondary groups.
Rasmuson et al. [4] illustrated the asymmetric conditions in total
failure probability due to degradations, and O’Connor et al. [5]
proposed the general dependency model (GDM) using a Bayesian
network to overcome the limitations of traditional CCF models,
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such as non-identical components.
Most research on asymmetric CCFs, as described above, is based

on the parametric method. However, constraints may arise in
dealing with asymmetry problems through the parametric ap-
proaches because they are basically developed based on the sym-
metry assumption. For example, it is difficult to handle
asymmetries in both total failure probabilities and dependencies.
Different components/operation modes cannot be grouped as the
same CCCG. Therefore, this paper has tried to manage the sym-
metry and asymmetry in CCFs using the concept of the multivariate
probability distribution of components using copulas. A copula is a
multivariate probability distribution with uniform marginals to
model dependencies among random variables [6e8]. It is widely
used in many research areas that need to model the dependencies
of multivariates, such as reliability engineering and hydrology
[9e12]. If the joint distribution of CCFs can be constructed using
copulas, the dependent failure probability will be logically esti-
mated without the symmetry assumption.

However, the field data needed to construct the multivariate
probability distribution are practically limited. It is difficult to
secure plant-specific data because failure events are rare; therefore,
data from various sources (industrial plants) have been collected
and evaluated as generic data. This involves a qualitative and
quantitative evaluation based on expert judgments or reference
guidelines [1,2,5]. In addition, the failure data have been integrated
through mapping-up/-down techniques [1] when the number of
components in a redundant system varies. However, the data
manipulated and merged from various sources cannot capture the
specific features of components, such as asymmetry.

Therefore, this paper describes CCFs using copulas under the
assumption that plant-specific data, including asymmetric condi-
tions, can be collected and without considering the existing failure
data. This assumption is applicable evenwhen the existing data can
be adjusted to build the probability distributions. Accordingly, this
paper uses simulated data to validate the proposed method. In
addition, Bayesian inference [11e14] for the parameters of marginal
and copula distributions is employed to statistically back up their
uncertainty, because not much data are available in practice. Mar-
kov Chain Monte Carlo (MCMC)-Metropolis Hastings (MH) algo-
rithms are used to sample from the posterior distribution.
Consequently, the multivariate probability distribution of the
components is constructed using mean values of the posterior
distributions for each parameter instead of prediction distributions
for simplicity, and then the failure probability of each component is
decomposed into CCBEs for k-failure [15,16].
2. Common cause failures

2.1. Symmetry assumptions in CCFs

The fault tree for two component failures, with one out of two
success logic, is shown in Fig. 1. The failure of A (or B) is composed
of an independent failure and a two-component failure due to
common causes.

The total failure probability of A is given in Eq. (1):

PðAÞ¼QA
T ¼ QA

1 þ QAB
2 (1)

where QA
T is the total failure probability of A, QA

1 is the independent

failure probability, and QAB
2 is the failure probability of both A and B

due to common causes. As shown in Eq. (1), the total failure
probability can be represented in CCBEs, and thus the analyst needs
to know their probability rather than the total failure probability to
quantify the system failure through minimal cut sets (MCSs).
Furthermore, the symmetry assumption leads to simple formula-
tions as follows:

QA
T ¼QB

T ¼ QT (2)

QA
1 ¼QB

1 ¼ Q1 (3)

QAB
2 ¼Q2 (4)

Consequently, the analyst requires only the probability of Q1;Q2
to quantify this redundant system. It has the advantage of reducing
the number of parameters required for analysis as the number of
components increases. The symmetric condition also allows the
alpha factors to take a1;a2, which are not specific to each compo-
nent, to estimate Qk. As a result, the failure probability of k-
component failures can be calculated by Eq. (5) in the case of a non-
staggered testing scheme.

Qk ¼
k�

m� 1
k� 1

� ak
aT

QT (5)

where
�
m� 1
k� 1

�
is a binomial coefficient, ak is the alpha factor for

k-failure, and aT is equal to
Pm

k¼1kak. Accordingly, the CCBE prob-
abilities for k-failure can be estimated when the alpha factor and
the total failure probability are given. The alpha factors, regardless
of test strategy, are evaluated from Eq. (6):

ak ¼
nkPn
i¼1ni

(6)

where nk is the number of k-component failures and
Pn

i¼1ni is the
summation of the total number of failures. The number of
component failures nk could be assessed through the impact vector
involving a qualitative and quantitative analysis by experts because
failure data should be classified into independent failure or
dependent failure to count nk. For example, there is a two-
component failure data. If the expert concluded that this data
was caused independently, then n1 becomes two and n2 is equal to
zero. Otherwise, it the expert decided that the data was caused
totally dependently, then n1 is zero and n2 is equal to one. In
practice, the expert gives weights to the failure data to determine
whether they are independent or dependent failure. The details of
impact vector analysis are described in Ref. [1,2].
2.2. Asymmetry in CCFs

The symmetry assumption is quite useful and widely applicable,
but the particular cases where an asymmetric condition occurs
should also be addressed. These non-identical conditions in CCFs
have already been studied, including three examples of asymmetric
conditions that could occur in NPPs as described in Ref. [2]. One
example is functional asymmetry, as when four EDGs are supported
by three emergency service water (ESW) pumps, and these pumps
are also supplied by one EDG. If three EDGs fail to start, the operator
connects the last EDG to the ESW pumps to provide electrical po-
wer. In this case, the symmetry conditions cannot be guaranteed.
The second example is environmental asymmetry. Fig. 2 shows two
valves located inside containment and the others outside. Even if all
the design and maintenance features are the same, asymmetry in
dependencies or failure probabilities could occur. The last example
case in Ref. [2] is operational asymmetry. In BWR, many safety relief
valves are installed. One-third of the valves are disassembled and



Fig. 1. The fault tree of two component failures, with one out of two success logic.

Fig. 2. An example of environmental asymmetry in CCFs [2].
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reassembled at every refueling outage, hence, they might have
different degradation levels or dependencies.

U.S. NRC [1] refers to the asymmetry of CCW pumps in different
operation modes. Although they are regarded as the same CCCG,
non-symmetric conditions could occur between the standby pump
and the operation pump. It is also possible to have different total
failure probabilities or dependencies. This asymmetry has been
studied by adding an asymmetric basic event to the existing fault
tree of the CCW pump. However, the method of estimating the
probability of an asymmetric basic event is not explained in the
reference.

Kang et al. [3] suggest approximate formulas to describe
asymmetric components, such as EDGs and alternate AC DGs (AAC
DGs), by the decomposition approach. The total failure events are
decomposed into primary and secondary groups to deal with both
symmetric and asymmetric conditions. The parameter estimation
is done by approximating the formulas of the alpha factors and the
basic parameter models.

Rasmuson et al. [4] explain unequal total failure probabilities.
This asymmetry occurs when one component is degraded and this
results in having different failure probabilities across the compo-
nents. The problem can be solved by assuming the smallest failure
probability between the components as a total failure probability
based on the concept of the Fr�echet-Hoeffding upper bound. In
other words, it takes the assumption that the degradation impacts
only the independent failures, not the CCFs.

O’Connor et al. [5] proposed the GDM using a Bayesian network
to overcome the limitations of the traditional CCF models. GDM is
based on the cause condition probability, the component fragility,
and the coupling factor strength, which can be interpreted as
physical features of the system. Using these parameters and the
Bayesian network model, restricted conditions such as non-
identical components can be considered.

All of these researches have tried to resolve asymmetric con-
ditions in CCFs while keeping the parametric approach for esti-
mating probabilities. However, restrictions or constraints for
asymmetric CCFs still remain because the parametric models of
CCFs are basically developed based on the symmetric assumption.
For example, it is difficult to handle asymmetries in both total
failure probabilities and dependencies. Different components or
operation modes cannot belong to a same CCCG. Therefore, in this
paper, copula-based CCF models are proposed to model the
dependent failures of components without symmetry assumptions.
The multivariate probability distribution of components in a CCCG,
including their dependency, is constructed for estimating the CCF
probabilities. The asymmetry in both total failure probabilities and
dependencies can be measured since the proposed model is based
on the probability distribution. In addition, different operation
modes or components can be analyzed within this framework
because a copula allows the uses of various marginal distributions.
3. Copula and Bayesian approach

3.1. Copulas

A copula is a multivariate probability distribution with uniform
marginal distributions, used to model dependency between
random variables. It is widely used in many research areas [9e12].
By Sklar’s theorem [6e8], a multivariate probability distribution is
given in Eq. (7) through a copula and cumulative distribution
functions of each random variable:
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Fðx1; x2;…; xkÞ¼CðFðx1Þ; Fðx2Þ;…; FðxkÞ; qÞ (7)

where x is a random variable, FðxÞ is a cumulative probability dis-
tribution, and Cq is a copula with a copula parameter q. Each cu-
mulative distribution function has a value from zero to one as if U
(0,1). The advantage of using copulas is that it can be represented by
various marginal probability distributions through the probability
integral transform. Note that the expression in Eq. (7) is unique only
when the random variables are continuous. If we denote FðxkÞ ¼ uk
and differentiate Eq. (7) for each random variable, a multivariate
density function is given in Eq. (8):

f ðx1; x2;…; xkÞ¼
v2C

vu1vu2…vun

dFx1
dx1

dFx2
dx2

…

dFxk
dxk

¼ cðu1;u2;…uk; qÞf1ðx1Þf2ðx2Þ…fkðxkÞ
(8)

One type of copula is the elliptical copula such as a normal and a
t-copula. There is also the Archimedean copula family, which in-
cludes Frank, Gumbel, and Clayton copulas. The correlation be-
tween variables is determined through a copula parameter q.
Table 1 shows the typical copula distributions for bivariate vari-
ables and their scatter plots at certain copula parameters.

While normal and Frank copulas have symmetric structure in
their distributions, Clayton and Gumbel copulas have an asym-
metric structure as shown in Table 1. Although Table 1 represents
copula functions for bivariate variables, it is not difficult to expand
to n-random variables. For example, an n-variate Clayton copula

can be written as ðu�q
1 þ u�q

2 …þ u�q
n � n� 1Þ�1=q

. Since the
Archimedean copula generally has a single parameter, a vine copula
and the hierarchical Archimedean approach can be used [6e8] to
assign various dependencies between variables.
3.2. Bayesian inferences for parameters

The basic concepts of the Bayesian approaches supporting
copula-based CCFmodels are introduced here. The Bayesian infer-
ence treats a parameter as a random variable of a distribution
(Parameters of this distribution is called hyper parameters). For this
reason, it has the advantage of analyzing uncertainties of parame-
ters with combining prior knowledge. In general, the alpha factors
are updated through the posterior Dirichlet distribution [1].
Component unreliability data also employed the Bayesian statistics
using their conjugate prior distribution [17]. Due to the feature of
Table 1
Typical copula distributions for bivariate random variables.

Cðu1;u2; qÞ Scatter plot

Normal copula

Z F�1ðu1Þ

�∞

Z F�1ðu2Þ

�∞

exp

 
2qsw� s2 �w2

2
�
1� q2

�
!

2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

p dsdw

Gumbel copula

exp� ½ð�lnu1Þq þ ð�lnu2Þq�1=q
copulamentioned in Section 3.1, the prior knowledge of component
unreliability data can be used as the prior of marginal distributions
in a joint probability distribution. Therefore, the Bayesian approach
was selected to infer copula parameters as well as parameters of
marginal distributions. First, the posterior distribution can be
defined using likelihoods and prior distributions given in Eq. (9)
[6]:

pðqjxÞ¼ pðqÞf ðxjqÞð
pðqÞf ðxjqÞdx

(9)

where q is the parameter of the probability distribution and x is the
observations. The posterior distribution pðqjxÞ is determined using
the prior distribution pðqÞ and the likelihood function f ðxjqÞ.

It is known that the use of conjugate prior distributions makes it
easier to estimate a posterior distribution. For example, a Poisson
distribution as a likelihood function for observations (n, t), and a
gamma prior distribution Gammaða; bÞ leads to a posterior distri-
bution, Gamma (a þ n; b þ tÞ.

If it is possible to sample random variables (i.e., independent
and identically distributed, i.i.d) from a posterior distribution,
Monte Carlo sampling instead of conjugate distributions can be
used to infer all quantities of interest for a posterior distribution.
When the sampling cannot be directly obtained from a posterior
distribution, Markov Chain Monte Carlo (MCMC) is applied to draw
random variables. The widely used sampling techniques for MCMC
are of two types, Gibbs sampling [18] and Metropolis-Hastings
(MH) sampling [19]. Gibbs sampling produces random samples
using a full conditional distribution of each parameter rather than a
posterior distribution. MH employs a proposal distribution, which
can easily generate random numbers, instead of a posterior distri-
bution. This paper uses MCMC-MH sampling algorithms; their
simple descriptions and summaries of the algorithms are described
below.

The algorithm starts from an arbitrary initial value of a param-

eter denoted by qð0Þ. MCMC-MH proposes a new parameter value
by a proposal distribution as a candidate. One of the proposal dis-
tributions is a normal distribution, which features a random walk
chain and symmetrical structures around zero. The new value
(candidate) generated from the proposal (tþ1) is compared with
the value in the previous step (t) through the acceptance proba-
bility (p) given in Eq. (10). This probability determines whether or

not to accept the candidate value. Let us suppose that qðtÞ is a
Cðu1;u2; qÞ Scatter plot

Clayton copula

ðu�q
1 þ u�q

2 � 1Þ�1=q

for q>0

Frank copula

� 1
q
ln½1 þ ðe�qu1 � 1Þðe�qu2 � 1Þ

=ðe�q � 1Þ�
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current state and qðtþ1Þ is a candidate state. Then qðtþ1Þ is generated

from the proposal distribution around the current state qðtÞ with a
standard deviation s2 in the case of a normal distribution. Then the
acceptance probability (p) is given as:

p¼min
�
p
�
qðtþ1Þ�
pðqðtÞÞ

;1
�

(10)

where, in this paper, pð Þ is a posterior distribution as a target
distribution. The acceptance probability means which candidate
has a higher possibility in the target distribution. If the acceptance
probability is larger than 1 (i.e.pðqðtþ1ÞÞ >pðqðtÞÞÞ, the candidate
value is always accepted (See Fig. 3). In this case, the candidate is
more likely to be a sample from the target distribution. If qðtþ1Þ has
a lower probability than qðtÞ (See Fig. 4), then qðtþ1Þ is accepted or
rejected randomly; if p is larger than a probability generated fromU
(0,1), then the candidate value qðtþ1Þ is accepted. Otherwise, qðtþ1Þ is
rejected and the previous qðtÞ is held. Figs. 3 and 4 shows the simple
example of a MCMC-MH procedure with an acceptance probability
in case of a standard normal distribution, N (0,1) as a target
distribution.

At first, the proposal distribution draws the sample (qð1ÞÞ around
qð0Þ with the variance 2.5. Then the acceptance probability in Eq.
(10) can be calculated using the target distribution. In this case, qð1Þ

has a higher possibility than qð0Þ in the target distribution (i.e. p is
larger than 1). Thus, qð1Þ is accepted as a sample of the target
distribution.

In the next step, the proposal distribution generates the sample
ðqð2ÞÞ around qð1Þ. In this case, qð2Þ has a lower possibility than qð1Þ in
the target distribution, therefore qð2Þ is accepted or rejected
randomly. The chain will converge when there are enough Markov
Fig. 3. The first candidate of a parameter (qð1Þ) generated by
chains from the initial conditions. However, the variance of the
proposal distribution should be carefully determined because it
affects the jumping size to explore a sample space. If the variance
(or jumping size) is too high or too low, theMCMC-MH explores the
sample space of the target distribution inefficiently. In other words,
this jumping size is significantly related with the convergence rate
of MCMC-MH. One way of the convergence diagnosis for deter-
mining a proper jumping size is to check the acceptance rate. The
acceptance rate is the fraction of the accepted candidate. The ideal
acceptance rate in case of univariate normal distribution is about
50% [20]. Finally, the samples generated initially (called burn-in)
will be eliminated to reduce the effects of the initial conditions. The
overall algorithms of MCMC-MH are given in Table 2.
4. Copula-based CCF models

4.1. Posterior distributions of copula-based CCF models

In this section, the estimation scheme of CCF probabilities was
proposed via copulas instead of the alpha factor model described in
Section 2.1 to address the asymmetric conditions. The study of
copulas with regards to CCFs has already been studied in Ref. [9].
This paper developed a practical CCF model using copulas to solve
the asymmetric problem using the decomposition technique [16]
for applying to the fault tree of the PSA model. In addition, the
reliability data [17] can be used by employing the Bayesian
approach as a prior knowledge. Assuming that the failure data
under asymmetric conditions can be collected, the posterior dis-
tribution of the joint probability distribution for the components to
be analyzed is firstly constructed. The likelihood function, which is
themultivariate probability density function using the copula in Eq.
(8), and the prior distribution pðqjÞ of each parameter qj, formulates
the proposal distribution around the initial value (qð0Þ).



Fig. 4. The next candidate of a parameter (qð2Þ) by the proposal distribution around the accepted parameter (qð1Þ).

Table 2
MCMC-MH algorithms with a normal distribution as the proposal distribution.

Step 1 Set initial values for qð0Þ , s2 and initialize naccept

Step 2 For t ¼ 1 to N

Generate qðtþ1Þ � NðqðtÞ;s2Þ and u � Uð0;1Þ
If u<p then

qðtþ1Þ ¼ qðtþ1Þ

naccept ¼ naccept þ 1

Acceptance rate ¼ naccept

N
Else

qðtþ1Þ ¼ qt

Step 3 Repeat Step 2 for iterations (N) or until convergences
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the posterior distribution given in Eq. (11) [11,13,14]:

pðQjXÞf
Ym
j

p
�
qj
�Yn
i¼1

cðu1i;u2i;…unijQÞf1ðx1ijQÞ

� f2ðx2ijQÞ…fkðxkijQÞ
(11)

where Q is the vector for m parameters (Q ¼ q1;q2…qm), X ¼ x1i;
x2i…xki for k random variables and i-th observations, and u1i ¼
F1ðx1ijQÞ. MCMC-MH allows us to draw random variables from the
posterior distribution given in Eq. (11).

Because the actual failure data is not available, we generated
1000 sets of simulation data for the bivariate case, with exponential
marginal distributions and a Clayton copula to verify how the
copula-based CCF model with Bayesian inferences works. The
multivariate data were generated using the R-programming pack-
age, copula; each exponential marginal had the parameter value of
0.005/hr (i.e., l1 ¼ l2 ¼ 0:005=hrÞ and the copula parameter (qÞwas
assumed to be 0.1. In this paper, it was also assumed that the prior
distribution of all the parameters is a uniform distribution pðqjÞ �U
(0,1).

Once the data are generated (or collected in practice), the type of
marginal and copula in the likelihood function should be deter-
mined through various model selection methods [6,21]; however,
this step was not considered in this paper because the simulation
data were used. Accordingly, the same marginal and copula dis-
tribution as the generated data (i.e., exponential and Clayton
copula) were selected to construct the likelihood function in Eq.
(11). A total of 50,000 iterations of MCMC-MHwere carried out and
the initial 20,000 iterations were trimmed off. Fig. 5 shows the
results of sampling for three parameters.

The first row in Fig. 5 presents the histograms of the posterior
distribution of each parameter. The dotted lines in Fig. 5 indicate
the mean value of parameters. The second row is the trace plots
that can check the convergence of the MCMC. All the parameters
are converged around their respective values; this means the
copula-based CCF model with Bayesian inferences worked well.
The various example cases with the simulation data will be
described in Section 5.
4.2. Probability decomposition into CCBEs

If the multivariate probability distribution is constructed using
the parameters after Bayesian inferences, it is possible to calculate
the failure probability of each component, such as P(A), P (AB).
However, the ultimate probability that we want to know is the

probability of CCBEs (QA
1 ; Q

AB
2 Þ rather than P(A) or P (AB). There-

fore, the probability of each component should be decomposed into
the CCBEs. A method that allocates the probabilities of correlated
failures into CCF probabilities is well explained in Ref. [16]. For the
bivariate cases in this paper, the system of equations of each failure



Fig. 5. The sampling results from the posterior distribution using MCMC-MH algorithms.
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probability with respect to the CCBE representations is as follows:

PðBÞ¼QB
1 þ QAB

2 (13)

PðABÞ¼QA
1Q

B
1 þ QAB

2 (14)

Thus, the CCBE probabilities without a symmetry assumption
can be calculated by solving the system of equations using Eqs. (1),
(13) and (14) because there are three equations and three un-
knowns for the bivariate cases. The system of equations can be
established regardless of the number of components. Once the
probability of CCBEs is given, it is available to put into the fault tree,
as shown in Fig. 1. Fig. 6 shows the stepwise procedure of the
copula-based CCF models described in Sections 3 and 4.

4.3. Comparisons with the alpha factor model

In this section, the results of copula-based CCF model were
compared with the alpha factor model to validate the proposed
method using the given simulation data (Section 4.1). The copula-
based CCF model used the mean value of the sampling results in
Fig. 5 to calculate the failure probability of each component (e.g.
P(A), P(B), P (AB)). The failure probabilities were calculated through
a bivariate Clayton copula in Table 1. For example, themean value of

lA; lB is 5.0E-03 and q is 7.7E-02 as shown in Fig. 5. Thus, P (AB) can
be calculated by the following equation:

FðtA < T ; tB < TÞ¼
��

1� e�lAT
��q þ

�
1� e�lBT

��q � 1
��1=q

(15)
In this case, T is assumed to be 24 h. Finally, the failure proba-
bility of each component was decomposed into CCBEs as shown in
Table 3.

On the other hand, the number of component failures for the
alpha factor model was calculated depending on the cases. The first
case (denoted by Alpha_min in Table 3) included the assumption
that all failures of two components are independent and the second
case (denoted by Alpha_max in Table 3) assumed that all failures of
two components are dependent. For example, the number of fail-
ures of A (nA) in the simulation data is 112, nB is 113 and nAB ¼ 15.
The first case (Alpha_min) assumes that nAB is caused indepen-
dently, therefore n2 ¼ 0. On the contrary, the second case
(Alpha_max) assumes that nAB are totally dependent, which results
in n2 ¼ 15. The alpha factor was calculated using Eq. (6) and the
CCBE probability through the alpha factor model was estimated
using Eq. (5). The comparison results are summarized in Table 3.

It can be found that the results of the copula-CCF model are
properly located between Alpha_min and Alpha_max. Since the
actual results using the alpha factor are also located between min
and max in practice, it is confirmed that the proposed method can
make appropriate results for the dependent failures.

As mentioned in Section 3.1, since a copula can construct a joint
probability distribution with various marginal distributions, the
proposed method has the advantage of dealing with asymmetric
CCFs as well as symmetric conditions. To highlight the strengths of
using copula, we simulated 10 sets of failure data under asymmetric
conditions. It was assumed that the asymmetry occurs in total
failure probability of component A (The probability of failure of A is
about 2 times higher than that of B). The results of the alpha factor
model were compared with the results of the copula-based CCF



Fig. 6. Flowchart of a copula-based CCF model with the Bayesian approach.

Table 3
Comparisons between the copula-based CCF and alpha factor model.

CCBE QA
1 QB

1 QAB
2

Alpha_min 1.13E-01 1.13E-01 0
Copula-CCF 1.07E-01 1.08E-01 6.06E-03
Alpha_max 8.60E-02 8.60E-02 2.65E-02
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model using the same simulated data. Fig. 7 shows the results of
independent failure probability between AFM and Copula-CCF us-
ing the same asymmetric conditions.

In Fig. 7, the results using AFM are represented for only A

component because it assumes symmetry of components (QA
1 ¼

QB
1 Þ. Since the AFM does not consider the difference between A and

B, the results indicate the average of the differences of components.
However, the copula-based CCF model can capture such differ-

ences. It can be found that QA
1 is almost twice of QB

1 in the proposed
method. Therefore, the proposed method has strengths and flexi-
bility in estimating CCF probability under general conditions
without special restrictions. This is not common in risk analysis, but
it canwork for particular issues aforementioned. Chapter 5 includes
more example studies using simulated data under various asym-
metric conditions.
5. Example studies using simulated data

This section describes asymmetric CCFs based on the proposed
method using simulation data including asymmetric conditions. As
mentioned in the Introduction, this paper assumes there are no
existing failure data available to construct a probability distribu-
tion. If existing data are available or are used as prior information,
then it is obvious that the results will be much better. For example,
in the generic data in Ref. [17], the failure rate of an EDG is known to
be 8.48E-04/hr. Thus, the gamma prior, Gamma (2.01, 2.37Eþ03)
[17] can be used. The copula parameter can also be roughly esti-
mated by the alpha factors in CCFs [22]. We can use this informa-
tion as a prior distribution for a copula parameter. However, in this
paper the prior distributions for all parameters are assumed to be
uniform distributions, U (0,1) to describe more general conditions.
While a prediction distribution should be evaluated to estimate

probabilities using a posterior distribution, this paper used the
mean value of posterior distribution as a simple way. Note that the
results of sampling or convergences will change at every calculation
because simulation data is used. All calculations were carried out
using R-programming packages (copula and rootSolve for solving
systems of equations and ggplot2, gridExtra for visualizations).

5.1. CCCG 2: Asymmetry in total failure probabilities

Let us suppose that there are EDG failure data available for a
certain NPP. In particular, EDG B is more likely to fail than EDG A
due to degradations. (In this example, lEDG B ¼ 10� lEDG A and the
others are the same as the conditions described in Section 4; we
generated 100 sets of simulation data using an exponential mar-
ginal and a Clayton copula.) Using the posterior distribution given
in Eq. (11) and MCMC-MH sampling, the posterior means of each
parameter and the CCBEs are given in Table 4.

The quantities of interest, such as quantiles or means of the
posterior parameters, are presented in Table 3. The posterior mean
of lEDG B is much greater than lEDG A. As a result, the independent
failure probability of EDG B is higher than EDG A. These results
were as we expected.

5.2. CCCG 3: Asymmetry in dependencies

This example case describes the asymmetry in dependencies of
three EDGs using the normal copula. For EDG A, B, and C, it was
assumed that the failures between EDG B and C occur more
frequently than the other combinations. (The normal copula
parameter qBC is assumed to be three times that of qABð ¼ qAC), and
the others are the same as the condition described in Section 4; One
hundred sets of simulation data were generated using exponential
marginals and a normal copula.) The results are shown in Table 5.

The posterior mean of the normal copula parameter qBC cannot
be calculated as three times that of qAB or qAC because there were
not enough simulated data to describe the parameters exactly, as
mentioned previously. Nevertheless, this proves that the failure



Fig. 7. Comparison of the results between AFM and Copula-CCF using the same asymmetric data.

Table 4
Example case 1: Asymmetries in total failure probabilities for CCCG 2 of EDGs.

Posterior 2.5% Quantile Posterior Mean Posterior 97.5% Quantile CCBEsProbability

lEDG A 7.69E-04 9.50E-04 1.14E-03 QA
11.69E-02

lEDG B 8.39E-03 1.24E-02 1.11E-02 QB
12.10E-01

qclayton 1.17E-01 1.53E-01 3.80E-01 QAB
2 5.59E-03
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probability of QBC
2 is higher than that of QAB

2 or QAC
2 . The results can

be improved when more data are simulated (or collected in
practice).

5.3. CCCG 3: Asymmetries in both total failure probabilities and
dependencies

The final example is the asymmetries in both the total failure
probability and the dependency. A total of 200 sets of data were
generated and evaluated using copula-based CCF models, assuming
that the normal copula was used as described in Section 5.2. In
addition, it was assumed that EDG B’s failure rate is 10 times higher
than EDG A or C, and the dependency between B and C is three
times higher than AB or AC. Figs. 8 and 9 show the probabilities of
CCBEs of independent failures and dependent failures, respectively.

The independent failure of EDG B is greater than the others, and
the dependent failure of EDG BeC is also higher than A-B or A-C.
Especially, the failure associated with EDG B is likely to occur
because it has a higher total failure probability and also a greater
dependency. This demonstrates that the copula-based CCF model
with Bayesian approaches can provide the probability of CCBEs
Table 5
Example case 2: Asymmetries in dependencies for CCCG 3 of EDGs.

Posterior 2.5% Quantile Posterior
Mean

lEDG A 7.71E-04 9.47E-04

lEDG B 7.17E-04 8.80E-04

lEDG C 8.22E-04 1.00E-03

qAB 4.03E-03 9.29E-02

qAC 1.79E-02 1.56E-01

qBC 4.63E-02 2.28E-01

- - -
under asymmetrical conditions.
6. Conclusions

This paper proposed the copula-based CCF model for estimating
asymmetric CCFs in situations where plant-specific failure data can
be collected. The multivariate probability distribution across the
components in the redundant systems was constructed using the
marginal and copula distributions, and Bayesian inferences were
also applied to the copula-CCF model. The posterior distribution of
the copula-based CCF model allowed us to derive the asymmetric
CCBEs by solving systems of equations without symmetry as-
sumptions. Three example cases using simulation data are
described, which confirmed that the CCBEs were appropriately
derived by reflecting the characteristics of the data, such as
asymmetric conditions.

Although the proposed method is shown to be valid for esti-
mating CCF probabilities under asymmetric conditions, there are
certain limitations and notes to be addressed as follows. In terms of
the use of copula, while this paper used a normal copula to allocate
different dependencies onto the variables, the vine copula
Posterior 97.5% Quantile CCBEs Probability

1.14E-03 QA
1

2.15E-02

1.05E-03 QB
1

1.95E-02

1.21E-03 QC
1

2.21E-02

2.54E-01 QAB
2

3.07E-04

3.16E-01 QAC
2

6.48E-04

3.97E-01 QBC
2

1.02E-03

- QABC
3

4.30E-05



Fig. 8. The probability of CCBEs: Independent failures.

Fig. 9. The probability of CCBEs: CCFs of two component failures.
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approach can be used to enable an Archimedean copula to assign
various dependencies. The copula model selection should be also
performed to fit failure data. In addition, this study addressed only
continuous randomvariables, so a copula study for discrete random
variables in CCFs should be also carried out.

In the Bayesian framework, assuming a prior distribution has to
be carefully considered, i.e., a sensitivity analysis using various
prior distributions should be carried out because theremight be not
enough data in practice. The performance of the MCMC-MH
method used in this paper was significantly affected by our
choice of proposed distributions, their variances, and the initial
conditions. Therefore, empirical adjustments to MCMC-MH (e.g.,
the best acceptance probability or variance for this case) should
also be considered. Finally, a prediction distribution rather than the
use of the posterior mean should be considered.
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