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Bayesian Analysis for a Functional Regression Model
with Truncated Errors in Variables

Hea-Jung Kim!

ABSTRACT

This paper considers a functional regression model with truncated errors
in explanatory variables. We show that the ordinary least squares (OLS) es-
timators produce bias in regression parameter estimates under misspecified
models with ignored errors in the explanatory variable measurements, and
then propose methods for analyzing the functional model. Fully paramet-
ric frequentist approaches for analyzing the model are intractable and thus
Bayesian methods are pursued using a Markov chain Monte Carlo (MCMC)
sampling based approach. Necessary theories involved in modeling and com-
putation are provided. Finally, a simulation study is given to illustrate and
examine the proposed methods.

Keywords: Functional regression model, biased estimator, Markov chain Monte
Carlo, Bayesian estimation, conditional Bayes factor.

1. Introduction

If errors in explanatory variables are known to be present in regression anal-
ysis, the effect of the errors on OLS estimators is well known (see Carroll et al.,
1995). There are two classes of models that have been considered in describing
the effect. A structure model arises when the explanatory variable observations
can be considered to be realizations from a random variable, whereas the model
is functional if they must be considered to be fixed. Usually it is clear which
model class is appropriate according to the context of the data. In cases where
data are obtained from carefully controlled changes like experimental procedures
in the physical sciences, a functional model will be appropriate for describing the
effect. For the structural explanatory variable model, the effect of errors leads
to attenuation bias in the OLS estimators and is well investigated by Cochran
(1968), Fuller (1987), Schaalje and Butts (1993), Carroll et al. (1995) and so on.
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In this paper, we consider functional modeling. We restrict our attention
to linear models with, for simplicity, a single explanatory variable, although
similar ideas can be applied to multiple linear regression models. Denote the
n-dimensional response vector by Y and the corresponding vector of true ex-
planatory variables by x. Assume

Y ~ N(Bol + Bix,021,), and X = x + ¢, (L.1)

where 1 is an n-vector of ones. Furthermore, assume that the explanatory vari-
ables are subject to independent measurement error, with only X being ob-
served, where each component of ¢ is independent and identically distributed
as €; ~TN(0,1), ¢ =1,...,n, independent of Y. Here TN(0, 1) denotes a singly
truncated standard normal distribution with interval space [0,00) and 6 is an
unknown constant.

We will consider the effect on OLS estimator of 8 = (By,51) when using
W = (1, X) in place of the true but unknown design matrix w = (1, x), and then
suggest a Bayesian estimation procedure that will take account of the full error
structure. Note that Richardson and Wu (1970) and Morton-Jones and Hender-
son (2000) considered the effect of errors under the functional model with § = 1
and € ~ N(0,021I,). Therefore, our model of concern can be viewed as a veriant
of their model in a sense that it is designed to take account of the truncated
measurement error structure in the explanatory variable. An immediate exam-
ple of the error structure is radiance measurements from satellite-borne infrared
sensors. If one is interested in the relationship between sea surface temperatures
and associated monthly rainfall during an experimental period, errors in the rain-
falls (response variable) are known to be independent. It is also apparent that
measurement errors occur in true radiance readings, because the measurements
are severely distorted by the presence of clouds in the fields of view of the sensors
(see, DePriest 1983 and Azzalini and Valle 1996 for other examples).

2. Bias in OLS Estimator

Consider the effect on OLS estimator of 8 = (8o, 1)’ when using W = (1, X)
in place of the true but unknown design matrix w = (1,x). In this case, the

estimator of (1.1) is
BOLS = (W'W)"'W'Y. (2.1)
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Let x* = x + Bu.1 and e* = 8(e — u.)1 so that E[e*] = 0, where p.1 = Ele].
Then the OLS estimates of 8y and S are

30LS (x* +e)'{(x* + 1)1 - 1(x" + ")'}Y
sors _ U1(x"+e)'Y -1/(x* +¢")1'Y
o A
= (x*+¢&")'C,Y/A, (2.3)

where A = (x* + £*)'Cp(x* + ¢*) and C,, = (nI, — 11'), the centering matrix.
In considering the bias, we take expectations over Y first to arrive at
N x* + 6* IK x* + 6*
Ey[f7"5] = Po+ ,31( ) A"( ), (2.4)

Ey[67") = ﬁlw, (2.5)

where K, = (1'x*I, — x*1’).

Then we take expectation over £* to get the expressions for the bias. This
is not analytically possible because £* occurs in both the numerator and denom-
inator of (2.4) and (2.5). Approximate expressions can be obtained, however,
through the second order Taylor series expansion. That is

2 2
Ee[f(A,B)] ~ f(Ee[4], Eer[B]) + %varw (ng) + évarus) (a%f)

2
+ cov(A4, B) <Bi<9fB> , (2.6)

with the derivatives evaluated at the expected values of A = A(e*) and B =
B(e*). Here f(A, B) commonly denotes each fraction in the expressions of (2.4)
and (2.5).

To evaluate (2.6) the following lemma is useful.

Lemma 2.1. Suppose €} are iid random variables with mean zero and finite kth
moment pg, where e* = (e},...,¢e)". If we set A(e*) = e*Knpe* and B(e*) =
x* Cpx* + 2x* Cpe* + ¥ Cpe*,
var(B(e*)) = 4n?Vo? +n(n—1){(n— Dug — (n - 3)o?},
cov(A(e*), B(e")) = n(n—1)#{(n—1)ps— (n - 3)ol} — 2nu3V,

where o2 = Q%var(e;), x* = (zf,...,2%), T =1U'x*/n, and V = x* Cpx*/n.
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Proof. With e¥'Cre* = nY &2 — (10, e1)?, x"Cpe* = n Y0 2tel —

i=1%1t i=1
=1 7} Dli=1 €] and e Kne* = Y0 2 iy € — L, ofe] i e, after a
straightforward algebra, we see that
var(e¥ Cpe*) = n(n—1){(n—Dus — (n—3)c?},
E[(e¥Kne*) (e Cne*)] = n(n—1)&{(n —1)pq + (n? = 2n + 3)0?}

E[(z* Cpre*)(e” Kpne*)] = —nVys.

These results and equations E(e* Kne*) = n(n—1)Zo?, E(e*¥ Cpe*) = n(n—1)o?2,
and C2 = nC,, give the theorem. U

The kth moment u = E[e¥] = 6¥E[(e; — u.)¥] can be easily obtained from
Nakamura (1980) that discussed the moment of positively truncated normal dis-
tribution.

Theorem 2.1. When we use W = (1,X) in place of the true but unknown
design matriz w = (1,x) for the functional model (1.1), the biases of the OLS
estimators are given by

AOLS) _ B [~ ZTf(#B/ag)
0 1+ 7 n(n — 1)(1 + 7y)
grp{(5n —8) — (n —1)(u4/0?)}
n{n —1)(1+ 74)2
b [_ 1 27
el R o g

T ot —
fél(Lf/-FETf)z—g) +0(n7%)], (2.8)

bias(

+om44, (2.7)

bias(BP"%) =

where 7¢ = V/{(n — 1)a?}.

Proof. For (2.7), first take expectation over Y to get (2.4) which is fy +
Bi1A(e*)/B(e*), where A(e*) = e¥K,e* and B(e*) = (x* Cpx* + 2x* Cpe* +
e*lCnE*) for x* K, x* = x* K,.c* = 0. Since ¢* occurs in both the numerator and
denominator of (2.4) it is not possible to obtain explicit values for these quanti-
ties. However, applying Lemma, 2.1 to the Taylor expansion (2.6) of the function
of two variables f(A, B) = A(¢*)/B(c*), we have the result. In the approxima-
tion, we use E.+[A(e*)] = n(n—1)Z0? and E.-[B(e*)] = nV +n(n—1)o? because
the £} are independent one another and have mean zero (note that 82 f/8A% = ().
For the slope term, similar methods can be used to show (2.8). |
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Setting § = 1 and € ~ N(0,021,), i.e. py/o? = 3 and uz = 0, we see that
the biases in the Theorem 2.1 reduce to those of Morton-Jones and Henderson
(2000).

3. Likelihood Function

As was assumed if errors in explanatory variables are known to be present
in terms of the functioral form, then the most appropriate modeling and fit-
ting procedure will take account of the full error structure. In what follows we
reparametrize the model (1.1) in terms of By, B1, 6 = —B16AY/2 and X = 1/02.
That is

Y =06+ 51X +0z+e, (3.1)

where Y = (y1,...,yn), X = (X1,..., Xn), e = (e1,..-,€), 2 = (21,...,2)"-
Here ¢; w N(0,1/)) are independent of z; ud TN(0,1/)), a normal N(0,1/A)
distribution truncated to the interval [0, co).

Under the model (3.1), the distribution of y; is a skewed normal density (cf.
Henze, 1986) given by

00 . _X'R_ 2i2
= %/0 )\exp{—A(yz X’2B 92) }exp{~)\zi2/2}dzi
= 2X(8)$(A(6) (y: — XiB))R(SA() (i — XiB)), (3.2)

where X; = (1, Xi), 8 = (8o, B1), A(6) = (M (1 +6%))'/2, and ¢ and  are the
standard normal pdf and distribution function (df), respectively.

Lemma 3.1. Let 02 and o? be the variances of z; and €;, and let u3 be the
standardized third moment of z;: that is, p3 = E{{z; — E()]/0.}3. Then the
standardized third moment ,ug of y; is given by

(530.3 2
p = 2, (3:3)
Jy

where ag =var(y;) = 6202 + o2.
Proof. From the model (3.1), we see that
Elyi —~ Ew:)]® = E[(0zi — 0E(z) + &)°]} = E[8*(2: — E(2:))°] = 6°03ps.

This and the definition of the standardized third moment of y; give the result. O
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Since p3 > 0 (i.e. the distribution of z; is skewed to the right as defined in
(3.1), (3.3) implies that the marginal distribution of y; is skewed to the right
(or the left) when § > 0 (or § < 0). Therefore, we see that the skewness of the
distribution of y; is characterized by 4.

Let Dops = (n,X,Y). Then the likelihood function of the model (3.1) is given
by

L(ﬁa 67)‘|D0b-5‘)
x H /00 Aexp {—)‘(yi —Xif - 6zi)° } exp{—Az2/2}dz;. (3.4)
=170

2

The likelihood function shows that the distribution of y;, which allows for flex-
ible modeling of the functional relation of (3.1), induces the problem of evaluating
the likelihood function. Recently, developments in simulation based Bayesian and
classical methods have given rise to reasonably effective methods for estimating
the model (cf. McFadden 1989, Albert and Chip 1993, McCulloch and Rossi
1994, and Stern 1997). Despite these developments, further improvements in fit-
ting of the model are possible, based on Markov chain Monte Carlo methods (c?.
Gelfand and Smith 1990, Chib and Greenberg 1996, and Chen and Dey 1998).
In general term, Markov chain simulation methods provide a rather attractive
framework for dealing with the functional model.

To ease the simulation method, we represent the likelihood (3.4) using auxil-
iary variables. Let Z = (21,...,2,) and let D = (n,Y, X, Z) denote the complete
data. Then complete-data likelihood function of the parameters (3,6, A) can be
written as

— X8 — 07)% + zf]}

L(B,6,\|D) & A" exp { OS] : (3.5)

This representation will ease computation involved in the Markov chain simula-
tion method. We demonstrate this idea and the role of the auxiliary variables z;
in the MCMC algorithm in Section 4.

4. Markov Chain Monte Carlo Method

In this section we present prior distributions for the reparametrized model
(3.1) and an algorithm to perform posterior computations for the model.
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4.1. Prior distributiouns

First, we choose multivariate normal prior distribution for the regression co-
efficient vector 8 = (Bg, 81)" in the model presented in (3.1). That is

(6o, Bo) o< exp { =56 — o) Bl - 00 |, (@)

where By is a precision matrix, 6y is a location parameter vector, and both 6
and By are specified. Second, we choose

7(6|dg, 7) ocexp{—~:(—6—2Lo)2} (4.2)
for the prior distribution of the skewness parameter, where 7 and §p are precision
and scale parameters, respectively. The hyperparameters By, 8, 7 and §y are
chosen to reflect the prior information. Typically, we choose 6y = 0, §y = 0,
7 = 0.01 and By = diag{B1, Bo} where Bj,j = 1,2, are chosen to be small (e.g.,
Bj; = 0.01) so that a vague prior distribution for 8 is obtained, which ensures
that posterior is driven by the data. Finally the conjugate uninformative prior
7(A) oc A7! is assumed for A, although what follows could easily be replicated for
any of the family of proper, gamma prior for A, of which p(}) is a limit.

4.2. The Gibbs sampler

We use Gibbs sampling (e.g., Gelfand and Smith, 1990) to perform the pos-
terior computation. We present the steps needed to perform the Gibbs sampling
algorithm for the skewed ¢ link model. To sample from the posterior distribution

p(ﬁa 67 )‘IDobs) X 7r(6|90a BO)”(5|50, T)W(A)L(ﬁ7 57 )‘IDO()S), (43)

we introduce the latent variables Z = (z1,...,2,)". Then the joint posterior dis-
tribution for Q = {3, 4, Z, A} is given by

s _X'B — §2:)2 2
p(QIDobs) X )\n_lexp{_/\Zizl[(yz X216 (521) +z1,]}

x m(B|6o, Bo)m(d]do, T)- (4.4)

From (4.3), we can derive following full conditional distributions of A, z;, 8 and

0 :
(ys — XiB) 1
1462 "XN1+462))°

zll’\7 6a B iﬁ'd TN(Z,‘ZO) ( (45)
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for i = 1,...,n, where TN(;,>q)(a,b) denotes N(a,b) truncated to the interval
(z: 2 0).

2 .
AZ,6, 8 ~ Gamma (n, ST P = XB = 5Zi)2]) . (4.€)

Let B = B Y (Bobfy + A", (y; — 62:)X;) and B = By + AS"; X;X!. Then
BINZ,6 ~ N(B,B7Y). (4.7)

Finally, if § = C~1 (7 + A0, 2i(yi — X!8)) and C = 7+ A Y 1, 22. Then full
conditional distribution of § is given by

8\ Z,8~N(,C7h). (4.8)

To implement the Gibbs sampler, we start with initial value of {2 and cycle
through the conditional distributions (4.5), (4.6), (4.7) and (4.8), in that order.

5. Model Comparison

In Section 4, we proposed a Bayesian estimation of the functional model (3.1)
in which the distribution of responses, y; are determined by 4. Therefore it is of
practical interest to compare models formulated by different choices of ¢ in (3.1),
usual regression model (Mj) with § = 0 and the functional one (M;) with ¢ # 0.
To this end, we propose an algorithm via the conditional Bayes factor approach
by Geweke (1996) in order to perform the model comparison. The algorithm can
be made by modifying the posterior simulation step of ¢ in the Gibbs sampler of
Section 4. Note that § = 0 is equivalent to § = 0 in (1.1) for § = —B,0X}/? with
B1 # 0 and A #0.

Under the same prior distributions for 8 and A, the prior distribution of 4, s
modified as follows. With prior probability ¢, § = 0; conditional on § # O the
prior distribution of ¢ is N(dp,1/7) :

—1/2,1/2 7(8 — do)*
dll(6) = qdH(d) + (1 — q)(2m) T/fexp =51, (6.1)
where II(-) denotes the prior c.d.f. of §; H() =0if 6 <0and H(5) =1if 6 > 0.
The conditional distributions of A, z; and 8, involved in the algorithm are the
same as the Gibbs sampler. For the model selection, we apply the conditional
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Bayes factor approach for 8. Given Z, 8 and ), define w; = y; — X]f, so that the
conditional distribution of ¢ follows from the simplified model

wi = 0% + e, €& S NO,1/A), i=1,...,n. (5.2)

The likelihood function kernel is

exp {_)\Z?:l(z;)i - 521)2} |

Conditional on é = 0 the value of the kernel is
exp {—2\—21—7;:—1’“]’2} . (6.3)
Conditional on § # 0 the corresponding kernel deunsity for § is
(%)1/2 exp {_'\2?:1(1;% — 82;)? } exp {_7(5 —2 8o)? }

1/2 n 2 2 _ (152 Y
_ (L) / exp{_xzzzlwz +70% —Cé }exp{_0(52 ) } 5.4)

27 2

where C and § denote the same quantities as used for the Gibbs sampler in
Section 4.

To calculate the conditional Bayes factor, it is necessary to integrate (5.4)
over § which yields the conditional marginal likelihood

1/2 A w? 2 _ (042
(1) exp{— Zz:lwz+T60 c } (55)

C 2

Comparing this marginal likelihood to (5.3), we have the conditional Bayes
factor in favor of § # 0, versus § = 0, that is

. T\1/2 C§? — 7682

To draw ¢ from its conditional distribution, the conditional posterior probability
that = 0 is computed from the conditional Bayes factor (5.6) :

¢ =q/{g+(1—-q)BF°}. (5.7

Based on a comparison of this probability with a drawing from the uniform dis-
tribution on [0, 1], the choice § = 0 or ¢ # 0 is made. Therefore modifying the
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fourth step of the Gibbs algorithm, we have the following algorithm for the model
comparison.

Algorithm for model comparison :

e Independently generate z;, ¢ =1,...,n as the Gibbs sampler;
e Generate A as the Gibbs sampler;
e Generate [ as the Gibbs sampler;

e The parameter § is drawn so that, for J, compute ¢°from BF€and
generate u from U(0,1), if u < ¢ set § = 0. Else, sample § from
N(6,C71).

The algorithm proceeds in the usual way. The model comparison could be
done in the obvious way, by recording the indicator variables for the model cor-
responding to the nonzero §’s at the end of each iteration. That is

# of nonzero §

(5.8)

6. Illustrative Example

We now conduct a simulation study for the functional regression model with
the truncated errors in explanatory variables. The objectives in this study are
(a) to illustrate the numerical accuracy of the Bayesian estimation method and
(b) to examine the performance of the model comparison using the conditional
Bayes factor approach.

In this study we consider a simulation with the functional model. We generate
multiple (100 replicated) simulated datasets from the following model :

vi=Po+ /X +6z+¢, i=1,...,n, (6.1)
where € 5 N(0,1/)\), 2z “ TN(0,1/)).

First, we set X; = .5 x4, i =1,...,n (n = 30,100, 200), and then generate n
independent response variables, y; from the model with one covariate X;, fp = 2,
By = 3,8 = —2and A = 1. For each simulated data of y}s and X's, we conduct the
proposed Bayesian estimation via the Gibbs sampling method. In the estimation,
we considered following values of the hyperparameters, By = .0113, 7 = .01 and
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8o = dp = 0 so that a vague prior distributions for 8y, 81, A and § are obtained,
which ensures that the posteriors are driven by the data.

The Gibbs sampler described in Section 4.2 was used to obtain simulated
samples 8 = (By, 1), 6 and A of each size 10,000 for the model. Many standard
diagnostic measures, (see, e.g., Cowles and Carlin, 1996) have been calculated to
monitor convergence and those indicated rapid convergence.

B B

— ans 1

efichy

3m8 o
1 [ — [p—

= 256

il
ally

P

205 - i

n=30 n=100 n=200 n=30 n=100 n=200

FI1GURE 6.1 Bozplots of the posterior means of the parameters

Based on the diagnostics we discard first 1000 iterates in each data case and
use the subsequent 10,000 iterates to make inference. Boxplots of 100 posterior
means (the average of simulated values) of the regression coefficients (£ and 51)
in the model (5.8) are displayed in Figure 6.1. These boxplots indicate that the
Gibbs sampler has given estimates ccncentrated on the true values that generated
data. Further, the estimation is improved as n become larger.

Second, we independently generate X; = .5 x4, ¢« = 1,...,100, and then
generate 100 independent response variables, y; from the model (4.6) with fp = 2,
f1=3,06=—-2and A= 1.

For this simulated dataset, we conduct the proposed Bayesian estimation us-
ing the same hyperparameters as the foregoing example. The Gibbs sampling
results are noted in Table 6.1. From Table 6.1 it is clear that the Gibbs sampling
method has accurately produced posterior distribution concentrated on each pa-
rameter value that generated data.
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TABLE 6.1 Summaries of the posterior distributions

Para. Mean SD  Median Lower (95%) Upper (95%)

Bo 1.941 0.215 1.935 1.669 2.221
B 3.002 0.003 3.002 2.999 3.006
] -1.765 0.353  -1.750 -2.234 -1.322
A 0.999 0.136  0.987 0.835 1.174

Finally, to examine the performance of the algorithm for the model compari-
son in Section 4, it is applied to multiple (100) simulated data sets of size n = 100
from the following model.

yi =2+3X;+0z+¢, 1=1,...,n, (6.2)
where ¢; £ N(0,1), 2 w TN(0,1). For illustrative purpose we take Pr(d = 0) =
g = 0.5, as a base prior probability that ¢ is excluded from the model. To stucy
the relation between the prior and the posterior distribution of é’s in conjunction
with the algorithm, we also consider ¢ = 0.2 and g = 0.8. In order to reflect the
vagueness of the prior information about By, 81,  and A, we represent our prior
distribution through the hyperparameters By = .01I3, 7 = .01 and set § = 0 and
do = 0.

For each given value of § = 0,—.3,—.9, —1.5, —2 (equivalent to § = 0, .1, .3, .3,
.75), posterior probabilities of alternative states of § are obtained from the 100
simulated data sets and their mean and standard deviation are presented in Table
6.2. Figure 6.2 is also presented to show the distribution of the probabilities. To
obtain the probabilities the method described in Section 4 is used, with m = 104
iterations of the algorithm beyond 10® burn-in iterations. From the table we see
that a systematic effect of the value of ¢ on the posterior probabilities is evident.
Increases in g, the prior probability that § = 0, tends to favor the usual linear
regression model. Thus giving more informative prior to J has the potential to
effect our posterior inference about 6. From Table 6.2, it can be also observed
that, regardless of the particular prior ¢, the partial Bayes factor method yields
the largest posterior probability for the true state (6 = 0 or § # 0).
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TABLE 6.2 Mean and standard deviation (in parenthesis) of posterior probabilities
Pr(é6 # 0|D)

Prior State =0 6=-03 §=-09 d&=-15 6 =-2
#=0 (@=01) (0=03) (6=05) (6=0.75)

g=02 6+#0 0.271 0.402 0.782 0.901 0.998
(.102) (.283) (.294) (.214) (.046)
g=05 6§#0 0.203 0.381 0.743 0.874 0.923
(.198) (.307) (.355) (.231) (.102)
qg=08 4§#0 0.139 0.320 0.638 0.712 0.825
(.230) (.326) (.362) (.273) (.129)

Frequency

&=—0.9

0.0 0.2 0.4 0.5 0.8 1.0
Pr@E=*0 | D)

FIGURE 6.2 Histogram of Pr(d # 0|D) when § = —0.9 with ¢ = 0.5

7. Concluding Remarks

Clearly, an efficient estimation procedure should take into account the full
error structure in any data set and should allow for errors in explanatory variables
if these are known or suspected to be present. In practice, however, due to
lack of testing procedure for the existence of the errors in explanatory variables,
investigators often assume that explanatory variables are not subject to error.
We have shown that this assumption leads to OLS estimators to be biased.

This paper has presented a Bayesian method for analyzing a functional re-
gression model with truncated error in an explanatory variable. The model is
described in terms of a skewed normal distribution by Henze (1986) for its under-
lying error variables that are consisting of errors from response and explanatory



90 Hea-Jung Kim

variables. In addition, the paper has established Bayesian techniques for analyz-
ing the functional model from the output of posterior simulation via Markov chain
Monte Carlo method. Our illustrative simulation study suggests that (i) the tech-
niques can be applied to data sets of varying complexity and to high dimensional
models that are intractable by using a frequentist method; (ii) the goodness of
fit of the functional model can be well tested by the suggested conditional Bayes
factor method.

Finally, the principle of analyzing the functional model suggested in this paper
can be extended to the multiple linear regression model with truncated errors in
independent variables, and this extension is now under investigation.
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