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Bayesian Estimation for Skew Normal Distributions Using
Data Augmentation

Hea-Jung Kim?l
Abstract

In this paper, we develop a MCMC method for estimating the skew normal
distributions. The method utilizing the data augmentation technique gives a simple
way of inferring the distribution where fully parametric frequentist approaches are not

. available for small to moderate sample cases. Necessary theories involved in the
method and computation are provided. Two numerical examples are given to
demonstrate the performance of the method.
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1. Introduction

Azzalini(1985) and Henze(1986) worked on the so-called skew normal distribution, a family
of distributions including the standard normal, but with an extra parameter to regulate
skewness. A random variable X is said to be skew normal with parameters p, 0, and A,
written SV(X; u, o), if its density function is

flzlp, o, ) =(2/06)0(N\2)p(z), —oo <z < o, (1.1
where —o <p, A<, ¢>0, z=(x—pu)/o, and ¢(z) and ¥(z) are the standard normal
density and distribution functions, respectively. The skewness is regulated by the parameter
A; A =0 yields the normal model. We refer to Azzalini(1986), Arnold et al.(1993), Chen, Dey
and Shao(1999), Kim(2002) for the application of the distribution. Multivariate extensions of
this model have been developed by Azzalini and Dalla Valle(1996) and Azzalini and
Capitanio(1999). Other models handling skewness and heavy tails simultaneously are also
developed by Azzalini(1986), Branco(2001), and Kim(2002).

A number of investigators- studied inferential aspects of the SN()\; p,0) distribution. The
information matrix of the MLEs in the distribution has been derived by Azzalini(1985). Other
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estimation issues of the distribution have been considered by Azzalini and Dalla Valle(1996)
and Azzalini and Capitanio(1999). As pointed out by Azzalini and Capitanio(1999), however, the
likelihood shape and the MLE are problematic in the inference of the SN()\; u,o) distribution.
In addition to difficulties with numerical maximization, anomalies of the ML estimate exist due
to the intrinsic properties of the likelihood function, which are not removable by a change of
parameterization. Specifically, the estimate of ), obtainable from profile likelihood of )\, tends
to diverge when sample size is small to moderate and the source of this sort of anomaly has
not been fully explained. Furthermore, exact distribution of the MLEs is not known so that
inferences about u, o, and A are not possible for small to moderate sample size.

In this paper, we suggest an alternative estimation method that resolves the problems
involved in the ML estimation of SN(); u,0) distribution. This is done by Bayesian estimation
via Markov chain Monte Carlo(MCMC) that allows us to sample from the distribution of
parameters of SNV()\; u,0) distribution, by exploiting a particular mathematical representation
involving the skew normal density. The interest in studying the estimation comes from both
theoretical and applied directions. On the theoretical side, it provides small to moderate sample
inference for SN(); p,0) distribution. In applied view point, the suggested estimation method
provides yet another example of data augmentation technique for MCMC method.

2. Bayesian Inference

2.1 The Joint Posterior Density

The Bayesian paradigm is to update parameter knowledge, in the form of a density function
7(6), using observed data z, through the parametric model density function p(x]8). The
result is a posterior density given by w(f|z )ocp(z10)7(0). Suppose the model density for x
alone is a complex form, but a simple form of the model density is available if we express it
jointly with some extra random variables y in the form of p(x,y|6). Then the posterior is
formally obtainable through Bayes’' theorem by integrating out the unwanted variables, so that

(fz )o< f p(z,yl0)w(0)dy. Such a representation is available for x modeled by the skew

normal distributions, and we begin with the following theorem.

Theorem 2.1. Let A = p/(l—p2)1/2, and define a density function of X=0Z+u and Y,
conditional on A\ as

flz,y M) =(2/6)g(z,y), 0<y< oo, —0 <z < 0, (2.1)

where g(Z,y) denotes the joint pdf of a standard bivariate normal random variable with

correlation coefficient p(lpl <1) so that —© <A< ©, agnd z=(z—p)/o. Then
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f (:E,y|)\) is a proper bivariate probability density for the distribution of (X, Y), and the
marginal distribution of X is SN(A;p, o).

Proof. Note that, for all A, f(z,y |IA\) >0 holds for the space of (X, Y) and

f: /000 f(z, Y\ )dydz =(2/,)(1+>\2)1/2/

e o]

8 [ SR Y-\ s

=06)[ " pe0e=1
Thus our function (2.1) is indeed a proper bivariate density function. Moreover, the marginal
distribution of X has the density function of S¥(\;u, o) distribution.

Corollary 2.1. The density for Y conditional on X, f(y|l\,z), is given by
flyr, z)ocg (1+1) 2y —Az), 0<y < oo (2.2)
for —o0 <z < o0,

Proof. The proof is trivial.

From Theorem 2.1, we can have an alternative expression for the joint distribution of 2 X1
vector of observations T from SN(\;u,0), A= p/(1— p*)*?, distribution. More specifically,
let (Z,Y.) be a standard bivariate normal random variable with correlation coefficient p

(lpl < 1) and let Z = (X, — ) /0, then the joint pdf in (1.1) can be expressed as

f(z‘l"’; U;A) = 2n/ / Ha—lg(zi) Yi )dy;
0 0 =1

where 2, = (z;, —pu)/0 for i=1,2, --,n and ¥ is a n X1 vector of auxiliary independent

standard normal variables ¥;. Therefore, under the reparameterization p = A/(1-+ /\2)1/2 and
some prior density ﬂ'(M, o, p), the posterior density of the skew normal parameters is given
by

/w [Ha_lg(zi,yi))W(u,o,p)dy. (2.3)
0 i=1

As we shall show, the practical exploitation of this representation requires the use of
Markov chain Monte Carlo(MCMC) simulation. This combination of MCMC and the forgoing
density representation will enable us to produce samples from the joint posterior density of

7r(u,a,p|z)0cf

0

the skew normal parameters denoted by 7 (u,0, |z ).

2.2 The Gibbs Sampler Using Data Augmentation
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The Gibbs sampler is a Markovian updating scheme originally developed by Geman and
Geman(1984) for use in image processing and introduced as a powerful tool in general
Bayesian statistics by Gelfand and Smith(1990). The Gibbs sampler needs not to be restricted
just to parameters. When a model includes auxiliary variables (missing data, for example),
Gelfand et al.(1992) showed that such unobservable variables can simply be added to the
parameter vector and the Gibbs sampler can be constructed for the augmented vector.

Exploiting Theorem 2.1 and the idea of running the Gibbs sampler on an augmented vector
of unknowns, we generate from w(u,o,p| ) as follows. For each observation T;, we

generate a ¥; from f (yilu, 0,0, ), given up to proportionality by Corollary 2.1. Once we
have generated the entire n X1 vector y, we generate i, 0, and p from respective full
conditional posterior distributions:

m(ul o,0,2,y), w(ol p,p,2,y), and 7 (p| p,0,7,y).
A long run, iterating this procedure, enables us to estimate and summarize features of
7(p,0,plz ), and hence 7(u,0,A|z) as required. The crucial feature of this method of

analysis is that, by introducing auxiliary variables, we have circumvented the problem of
being unable to specify the Gibbs sampler for the skew normal distribution in closed form.

2.3 Random Variate Generation of y

We begin with Gibbs sampling of y. Efficient generation from
ly; — p2; ]2
2(1—p%)
is vital to the successful implementation of this method of skew normal analysis, because a ¥;

f(yzl ,Ll,,O',p,(Ci)OC €xp {—_ }: O<yz < oo;i=1)---;nl (2.4)

value is required for every &; value, at every iteration of the Gibbs sampler, where
z; = (wi —u)/a. The conditional posterior distribution of Y, is a truncated normal,
N ( pz;, 1— p2 ), with lower truncation point at O. The efficient one—for-one method by
Devroye(1986) is available for generating variate Y, from the truncated distribution (2.4): Let
U; be an observation generated from Uniform(0, 1) distribution, then

A yi = pzi +(1— ") & 'p(ui;p,2)], i=1,-,n (2.5)
is a drawing from the distribution (2.4), where

p(usip, %) =0 (= pz/(1- 7)) +u;, 1= B (= pz,/(1—p*)?)) .

2.4 Random Variate Generation of L

From (2.3), we see that the conditional posterior density for g, with a prior density (),
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is given as

oo [ nlu-G o) )
m(ulo,p, @,y )oc exp { “202‘€1_p§§’ } (n) 26)

for — o0 < p < o, Assume that i, 0 and p are priori independent and we have a conjugate
prior, 71'(,u)0C exp {— (,u— 5)2/ (272 )}, then the full conditional posterior distribution of f is
2z —opy)+a>(1—p*)8  Po(1—p%)
lo, p,z,y ~ N(" - , : @7
o, P %Y n?+o*(1—p°) n? + o2 (1—p?)
An assessment of the hyperparameters ¢ and 7 leads to Gibbs sampling of ¢ from the
normal distribution (2.7). '

2.5 Random Variate Generation of o

If we assume w(o)oco™™ ‘expi—S/(26%)}, a generalized inverse Chi-density on m

degrees of freedom as given in Lee(1997). The full conditional posterior density for o with the
prior density is

(1-p")5+ Z (mi—ﬂ)2_2apz (z; — 1)y;
= = 2.8)
20 (1—p%)

for 0 > 0, where m and S are the hyperparameters to be assessed. Generating ¢ from the

—(n+m+1)

vﬂ(glu’p’x’y)oca €Xp|—

distribution of (2.8) is not trivial since no real information on the shape of (2.8) is available,
and we must resort to the Metropolis algorithm. Therefore, we consider the following random
walk(RW) Metropolis algorithm with a de-constraint transformation to sample 0. Since 0 > 0,
we let £ =Ino, — 0 < £ < ©, Then

7(&lu, p,z,y) =7 (olp,p,,2,y) €. 2.9)
Instead of directly sampling o, we generate £ by choosing a proposal transition density that
adds noise to the current state. The algorithm to generate & operates as follows: Assume that
we are currently performing the ¢th iteration of the sampler, then updating procedure from &
to &4 is
1. Generate ¢ from &;+Z, where Z~ N(O, 7).
2. Generate ¥ from a Uniform(0, 1).
8. I u < w(El i1, 0ir T, Yiu1) /T (&illtin 1, P15 T Yir1) then &1

otherwise, &;11=¢;.

After we obtain &1, we compute 0;4; by using the relation £ = Ino. The variance, " of

the normal proposal transition density can be tuned so that the optimal acceptance rate 0.23 of
Robert et al.(1997) is achieved.
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2.6 Random Variate Generation of p

Assuming a uniform prior Uniform(-1, 1) for p, the full conditional posterior density for p
is given by

z"] [y?—zpyizi +Zzz]

7 (plu, o, 2,y )oc (1— p*)2exp |- =1 (2.10)
2(1—-p%)

for —1 < p < 1. Generating p from (2.10) is not trivial since (2.10) is not log-concave.

Therefore, we consider the following random walk Metropolis algorithm with a de-constraint
transformation to sample p. Since —1 < p < 1, we let

p=(—1+4+¢€%)/(1+¢€°), —0 < (< o, | (2.11)
Then
7 (¢l 0, 3,9) = 7 (plu, 0, 7,y )26
(1+¢€°)?

Instead of directly sampling p, we generate { by using the RW Metropolis algorithm. We can
use the algorithm as is used to generate from (2.10) as follows: Assume that we are currently
performing the 4 th iteration of the sampler, then:
1. Generate ¢ from (;+Z, where Z ~ N(0, 7).
2. Generate u from a Uniform(0, 1).
30X u < m(Giialthivs, Oig 1 T, Y1) /(G i 41, Oi+1, T, Y%41) then G11=C;

otherwise, (;;1=G;.
After we obtain (;,;, we compute Pi+1 by using the relation (2.11), and hence we generate
Aix1 by using the relation A\ = p/ (1 — ,02)1/2 . The variance, 1#, of the normal proposal
transition density should be tuned so that the acceptance rate is approximately 0.23.

3. Numerical Examples

Our examples are illustration of extensive studies we have undertaken to validate the
MCMC method. We generated n observations from a SN(\;u,0) distribution using the

algorithm by Henze(1986) and then ran the Gibbs sampler for 30,000 iterations. According to
the moments of the distribution(Azzalini 1985), it would appear that the sample mean minus

bk and sample standard deviation over (1 — (ck)2)1/2 are reasonable starting points for ¢ and
o, where ¢ = (2/m)%, k= A/(14+)?)"2, and b is equal to ¢ times the starting point of . In
an attempt to test the robustness of the sampler, we started A well away from their true

values, i.e. true value of \+2.
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For the analysis of the MCMC method given in Section 2, the hyperparameter prior
specification was defined by 6 =0, 7 = 100, m = 3, §= 100, reflecting rather vague initial
vague information relative to that to be provided by the data. The iterative process was
monitored by observing trace of the Gibbs samples, where the raw output for the three
conditionals(i, o, A) is displayed in the form of time series plots across iterations. Figure 1
shows the ergodic averages of the trace of three parameters, leading us to believe that
convergence has been attained before 20,000 iterations. Thus the first 20,000 samples were
removed from the output. Figure 2 contains histograms of the marginals of the three
parameters, which are all centered about their true values and apparently unimodal. The
sample means are not perfect as parameter estimates, because of the amount of skew in the

Gibbs samples as shown in Figure 2; however, they produced accurate estimates for the
SN(A\;p, o) distribution.
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Figure 1. Ergodic averages of (g,a,\).
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Figure 2. Histograms of (1,0, \).

Table 1. Results of the Posterior Estimates and Standard Deviations

True value MCMC n=20 n =50 n =100
(w,0,\) | result G5, 8) G.e,8) G,6.%)
a, 2 -2 Estimates [(1.1316, 1.8906, -.1958)((0.9172, 2.0903, -.1994) [(1.0024, 2.0439, -.1979)
S.D. (0.3592, 0.2078, 0.1696) |(0.3005, 0.1737, 0.1445)[(0.1186, 0.2023, 0.1118)
(1, 2, .2) Estimates |(0.8557, 2.0367, 0.1856)((0.9479, 2.2776, 0.1922)((1.1304, 2.0569, 0.1936)
S.D. (0.4002, 0.2300, 0.1678)(0.3196, 0.1747, 0.1408) [(0.2035, 0.1198, 0.1129)
1, 2, .5 Estimates |[(1.3718, 1.8871, 0.4830){(0.8307, 2.1934, 0.4813)|(1.2600, 1.9094, 0.5097)
S.D. (0.3412, 0.2508, 0.2144)(0.2736, 0.1937, 0.1463)(0.1775, 0.1384, 0.1168)
a, 2, -.5) Estimates [(1.1566, 2.2050, -.4766)|(0.8989, 2.1347, -.4942)|(1.1639, 2.1024, -.4909)
S.D. (0.3505, 0.2585, 0.2056)((0.1942, 0.1498, 0.1116)[(0.1968, 0.1401, 0.1144)
1,2, D Estimates {(0.9658, 2,1481, 1.0104)[(1.2515, 2.0635, 0.9591) (1.0347, 1.9047, 0.9604)
S.D. (0.3219, 0.3431, 0.3107)((0.2245, 0.2024, 0.2053)((0.1430, 0.1371, 0.1374)
a2 -1 Estimates [(1.1794, 1.9094, -.9924)((0.9679, 2.1376, -.9982) (1.6235, 2.0413, -.9450)
S.D. (0.4772, 0.4260, 0.2998){(0.2292, 0.2339, 0.2142)((0.1538, 0.1518, 0.1365)
1, 2, 2) Estimates [(1.0276, 2.0431, 1.6126)((1.0236, 1.8520, 1.8145)((0.9377, 2.0040, 1.9264)
S.D. (0.2667, 0.2866, 0.4067)((0.1630, 0.2199, 0.3541)[(0.1241, 0.1456, 0.2275)
1,2 -2 Estimates ((0.8299, 2.014, -1.8290)|(1.0482, 2.1869,-1.7581)|(1.0654, 1.9293, -1.9358)
S.D. (0.3106, 0.3464, 0.8341)((0.1920, 0.2309, 0.3350)((0.1186, 0.1893, 0.2156)

Table 1 shows estimation results for various true values of W,0, A and sample size 7.
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Table 2 contains a comparison of estimates obtained from the suggested MCMC method with
those obtained from the method of moments(MM) and the maximum likelihood (ML) method
described in Arnold et al.(1993). Estimates of the standard deviations of the ML estimators,
based on the estimated inverse of the information matrix(given in Azzalini 1985) are also
included in Table 2. But, due to complex distribution of the estimators, the standard deviations
of MM estimators are not available. The comparison is based on two simulated data sets of
size n = 100. Both data sets come from SN(A;u,0) distribution are the same data sets used
for obtaining Table 1. Data Set 1 is the simulated one for the case of (g, o, M)=(1, 2, .5)
and Data Set 2 is that for the case of (u,o, A)=(1, 2, -.5). An optimization procedure
due to Dennis, Gay, and Welsch(1981) implemented in S-PLUS, was used to maximize
the likelihood function of (1.1) and to compute profile likelihood functions. To summarize,
there is good agreement between the estimates of y and o for the three methods(MCMC
method, MM and ML method). The values of the estimate of A\, however, disagree with
each other. In fact, the values of )\ disagree in sign. Thus this study highlights the

performance of the suggested MCMC method and

Table 2. Values of Estimates: Quantities in Parentheses are the Standard Deviations

True Data Set 1 Data Set 2
Parameter | MCMC MLE MME MCMC MLE MME

u=1 1.2600 1.2613 1.2713 1.1639 1.1264 1.2793
(0.1775) (0.1841) (0.1968) (0.2418)

o=2 1.9094 1.9123 1.8437 2.1024 2.1312 2.1852
(0.1384) (0.2135) (0.1401) (0.2159) |

A=0.5 0.5097 -0.2546 -0.1983 -.4909 0.2341 -0.1746
(0.1168) (0.8421) (0.1144) (0.3261)

reveals the same problem of the frequentist estimation methods(MM and ML method)
detected by the simulation study in Arnold et al.(1993).

4. Conclusions

Very little work on the skew normal distribution parameter estimation and inference
appears in the literature due to the complex likelihood function. But we have shown that
Bayesian computation via MCMC allows us to sample from the distribution of the parameters
of the skew normal distribution, by exploiting a particular mathematical representation
involving the skew normal density. We have shown how MCMC method can be used to
generate Bayesian posterior samples from the parameters of a skew normal distribution. With
these samples, we are in a position not only to estimate parameter values, but also to make



332 Hea-Jung Kim

more general inference. We could, for example, readily compute parameter quantiles or
estimate arbitrary functions of the parameters.

The validation example in section 3 demonstrated good performance of the MCMC method.
As a minor numerical digression, it should be noted that, for small A value(A =2, -.2), the
standard deviation of the posterior sample is large compared to the estimate. This yields
inclusion of zero in a Bayesian confidence interval of A. The problem can be easily eliminated
by introducing constraint p > O(or p < 0) in (2.10) for the MCMC method. The constraint
can be attainable from the shape of the sample distribution.
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