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Wavelet Denoising based on a Bayesian Approach

Moon Jik Lee

Abstract - The classical solution to the noise
removal problem is the Wiener filter, which
utilizes the second-order statistics of the
Fourier decomposition. We discuss a Bayesian
formalism which gives rise to a type of wavelet
threshold estimation in non-parametric
regression. A prior distribution is imposed on
the wavelet coefficients of the unknown
response function, designed to capture the
sparseness of wavelet expansion common to
most application. For the prior specified, the
posterior median  yields a  thresholding
procedure

1. Introduction

Consider the
regression problem:

standard non-parametric

yi:‘.g(t{)'*’f‘:ik (1)

i=1,...n

where #=i/n, ¢; are independent identically
distributed normal variables with zero mean
and variance ¢°, and we wish to recover the
unknown function g from the noisy data
without assuming any particular parametric
form.

The function g is expanded in wavelet series in
a way similar to the generalized Fourier series
approach. The usual approach is to expand the
noisy data in wavelet series, extract the
‘significant’ wavelet coefficients by
thresholding, and then to invert the wavelet
transform of the de-noised coefficients. Donoho
and Johnstonel(3] showed that such wavelet
estimators with a properly chosen thresholding

rule have various important optimality
properties, The choice of thresholding rule,
therefore, becomes a crucial step in the

estimation procedure. In this paper we consider
a thresholding within a Bayesian framework. In
this Bayesian approach a prior distribution is
imposed on the wavelet coefficients of the
unknown response function. The prior model is
designed to capture the sparseness of wavelet
expansion common to most applications. Then,
the function is estimated by applying some
Bayves rule considered in the literature

corresponds to an L*-loss based on the wavelet
coefficients. In this paper, instead of the L?
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-loss, we proposed to of a weighted
combination of L'-losses based on the wavelet

coefficients. These losses correspond to L
-losses  based on the function and on its
derivatives: such losses are naturally measures
for spatially inhomogeneous functions. The
corresponding Bayes rule 1is the posterior
median and, for a certain prior, yields a
thresholding procedure.

use

2. Wavelet estimators
2.1 Wavelet transform

Wavelet series are generated by dilation and
translation of a function ¢, called the mother
wavelet:

¢i(0) =272 t— k), j kEZ. For suitable choices
of ¢, the corresponding set of ¢, forms an

orthonormal basis in L%(R). The wavelet series
representation of a function geL*(R) is then °

3( = ;‘2 ;wjksf’fk( D

where the wavelet coefficients w; are given by

wi= [ # DD,

In contrast to standard Fourier series, wavelets
are local in both frequency/scale (via dilation)
and in time {via translation). This localization
allows parsimonious representation for a wide
set of different functions in wavelet series. In
technical term of corresponding regularity
properties, one can generate an unconditional
wavelet basis in a wide set of function spaces.

2.2 Wavelet Shrinkage

Given observed discrete data Y=(y,... ,y,,)T

from model (1), we may find the vector @ of
its sample discrete wavelet coefficients by
performing the discrete wavelet transform of
Y:

Y= wy.
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where Wis the DWT-matrix with (&, 7) entry.
given by V (n) Wy ;= ¢u(i/n) =212 i n— k).

The population discrete wavelet coefficients dj
are defined as the DWT of the vector of
function values g(¢), i=1,...,n. These are
related to the wavelet coefficients

W= ng(thk(t)dt by d,«kz\/_;zw,»,,_ The V7 factor

essentially arises from the difference between
continuous and discrete orthogonality
conditions. Because of the orthogonality of W
the DWT of a white noise is also an array e,

of independent N(0,0¢*) random variables and.
hence, equally contaminates the population
discrete wavelet coefficients dj :

dp=dyte; i=0,...,2-1. (2)
The next step is to extract those coefficients
that really contain information about unknown
function g and discard the others. This can be
done by thresholding the sample discrete
wavelet coefficients 5’,; . The intuitive idea is
that the true function g has a parsimonious
wavelet expansion, i.e. only a few ‘large’ dj
essentially contain real information about g. If
we decide which ones these are, we can
estimate them and set all the others equal to

zero. Donoho and Johnstone proposed the hard
and soft thresholding rules:

Thord da V)= I D30,
T o d3.A) = sign( d)max (0, dd — A). (3)

where A=0 is a threshold parameter and [ is
the usual indicator function. In application,
hard thresholding generally reproduces peak
heights and discontinuous better, but at some
cost in visual smocothness. By defining

d = Ty dpd) or d 5= T, L dzA) . one

can then reconstruct £ by the inverse DWT:

g=Wad™ (4
The choice of A is therefore crucial : if the
threshold 1is too large then the wavelet

shrinkage estimator will tend to overfit or
underfit the data. Donoho and Johonstone
proposed the universal threshold
Apr=oV 2log(n) called by them as visuShrink.
Despite the simplicity of such a threshold, they
showed that the resulting nonlinear wavelet
estimator is spatially adaptive.

2.3 Bayesian Thresholding Rule

A large variety of different functions allow
parsimonious representation in wavelet series
where there are only a few non-negligible
coefficients present in the expansion. We
incorporate this characteristic feature of

wavelet bases by replacing the following prior
on the population discrete wavelet coefficients
dy:

dy~ mN(0, Z)+(1—1)¥0),
i=0,....J-1 k=0,...,2'~1
(5)
where 0<r;<1, &0) is a point mass at zero,
and d; are independent. The hyperparameters
7; and 7%, either zero with probability 1—7;
or with probability a; is normally distributed
with zero mean and variance Z;. The
probability 7; gives the proportion of non-zero
wavelet coefficients at resolution level j while
the variance r2,~ is a measure of their
magnitudes.
Subject to the prior, the posterior distribution

dydy 1is also a mixture of corresponding

posterior normal distribution and &0). Hence,
the posterior cumulative distribution function
F(dy d3). letting @ be the standard normal
cumulative distribution functions, is :

1 da— dac (P 0 Wi ]
A B =7 aJ( T T e a2,

(6)
where the posterior odds ratio for the
component at zero is :

W=

; 20%( t i+ o) D

The traditional Bayes rule corresponding to the

L%*-loss considered in the literature is not a
thresholding rule but a shrinkage. Instead, we
proposed to use of any weighted combination of

L'-losses on the individual wavelet coefficients.
Whichever weighted combination used, the
corresponding Bayes rule will be obtained by
taking the posterior median of each coefficients.

1—7r,-\/r,2- _ r,zﬂ
5 exp .

Med(d;) d3) = sign( d)max (0, ¢,
where:

2 ) in(w;
Ea= ozj-irz- 1@l - \[azrfrz- (DA‘( 1+mlr;(w,,,,1) )(8)

The gquantity ¢z is negative for all Zl’; in some
implicity defined interval [—A4;,4;], and hence
| d4 falls below the
threshold A;. The posterior median is therefore
a level-dependant thresholding rule with
thresholds A;. For large @ the thresholding
rule asymptotes to linear shrinkage by a factor
of t%(+ 1%, since the second term in (8)

becomes negligible as | d—o0.

dy 1is zero whenever
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2.3 Simulation

Figure 1 is the plot when Hyper parameters

were choosen as © = 25, x=0.05. while ¢
was fixed at 1. We applied this algorithm to
the "Einstein” image for three different levels of
Gaussian white noise contamination. Figure 2
shows four images orignal, noisy, restored with
weiner and bayes image. The Bayesian image
appears to be both sharper and less noisy.

Figure 1. The median of posterior
distribution (solid line) as function of
the empirical wavelet coefficients.

(c) (d)

Figure 2. Noise reduction example. (a)
Original image (cropped). (b) Image
contaminated with additive Gaussian shite
noise (SNR = 9.00dB). (c¢) Image restored
using Winer filter (SNR = 11.88dB). (d) Image
restored using Bayesian estimator(SNR =
14.83dB)

3. Conclusion

Removal of noise from images relies on
difference in the statistical properties of noise
and signal. The Bayesian estimator described
above provides a natural extension for
incorporating the higher-order statistical
regularity present in the point statistics of
subband representations. The estimator is
based on two factors - a subband
representation and a statistical model - both of
which can be generalized. Theorically, one
would like a direct link from the properties of
the subband pdf to the quality of noise
removal, which could then be used to optimize
the choice of subband transform. In addition,
the statistical model should account for joint
statistics of wavelet coefficients, both within
and between bands. Finally this type of
statistical image model can be useful in other
applications, such as image compression or
texture synthesis.
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