• Title/Summary/Keyword: Banach Algebra

Search Result 263, Processing Time 0.021 seconds

BANACH ALGEBRA

  • Ha, Kwang Chul
    • Journal of the Korean Mathmatical Society
    • /
    • v.1 no.1
    • /
    • pp.26-29
    • /
    • 1964
  • PDF

FULL SPECTRUM PRESERVING LINEAR MAPPING BETWEEN STLICTLY DENSE BANACH ALGEBRAS

  • Lee, Young-Whan;Park, Kyoo-Hong
    • Journal of applied mathematics & informatics
    • /
    • v.6 no.1
    • /
    • pp.303-307
    • /
    • 1999
  • Let A and B be two strictly dense Banach Algebras on X and Y respectively where X and Y are Banach space. We give some conditions under which full spectrum preserving linear mappings from A into B Jordan morphisms and X is homomorphic to Y.

ON EXISTENCE THEOREMS FOR NONLINEAR INTEGRAL EQUATIONS IN BANACH ALGEBRAS VIA FIXED POINT TECHNIQUES

  • Dhage, B.C.
    • East Asian mathematical journal
    • /
    • v.17 no.1
    • /
    • pp.33-45
    • /
    • 2001
  • In this paper an improved version of a fixed point theorem of the present author [3] in Banach algebras is obtained under the weaker conditions with a different method and using measure of non-compactness. The newly developed fixed point theorem is further-applied to certain nonlinear integral equations of mixed type for proving the existence theorems and stability of the solution in Banach algebras.

  • PDF

THE STABILITY OF LINEAR MAPPINGS IN BANACH MODULES ASSOCIATED WITH A GENERALIZED JENSEN MAPPING

  • Lee, Sung Jin
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.24 no.2
    • /
    • pp.287-301
    • /
    • 2011
  • Let X and Y be vector spaces. It is shown that a mapping $f\;:\;X{\rightarrow}Y$ satisfies the functional equation $$(\ddag)\hspace{50}dk\;f\left(\frac{\sum_{j=1}^{dk}x_j}{dk}\right)=\displaystyle\sum_{j=1}^{dk}f(x_j)$$ if and only if the mapping $f$ : X ${\rightarrow}$ Y is Cauchy additive, and prove the Cauchy-Rassias stability of the functional equation ($\ddag$) in Banach modules over a unital $C^{\ast}$-algebra. Let $\mathcal{A}$ and $\mathcal{B}$ be unital $C^{\ast}$-algebras. As an application, we show that every almost homomorphism $h\;:\;\mathcal{A}{\rightarrow}\mathcal{B}$ of $\mathcal{A}$ into $\mathcal{B}$ is a homomorphism when $h((k-1)^nuy)=h((k-1)^nu)h(y)$ for all unitaries $u{\in}\mathcal{A}$, all $y{\in}\mathcal{A}$, and $n$ = 0,1,2,$\cdots$. Moreover, we prove the Cauchy-Rassias stability of homomorphisms in $C^{\ast}$-algebras.

THE JORDAN DERIVATIONS OF SEMIPRIME RINGS AND NONCOMMUTATIVE BANACH ALGEBRAS

  • Kim, Byung-Do
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.29 no.4
    • /
    • pp.531-542
    • /
    • 2016
  • Let R be a 3!-torsion free noncommutative semiprime ring, and suppose there exists a Jordan derivation $D:R{\rightarrow}R$ such that [[D(x),x], x]D(x) = 0 or D(x)[[D(x), x], x] = 0 for all $x{\in}R$. In this case we have $[D(x),x]^3=0$ for all $x{\in}R$. Let A be a noncommutative Banach algebra. Suppose there exists a continuous linear Jordan derivation $D:A{\rightarrow}A$ such that $[[D(x),x],x]D(x){\in}rad(A)$ or $D(x)[[D(x),x],x]{\in}rad(A)$ for all $x{\in}A$. In this case, we show that $D(A){\subseteq}rad(A)$.

PAIR OF (GENERALIZED-)DERIVATIONS ON RINGS AND BANACH ALGEBRAS

  • Wei, Feng;Xiao, Zhankui
    • Bulletin of the Korean Mathematical Society
    • /
    • v.46 no.5
    • /
    • pp.857-866
    • /
    • 2009
  • Let n be a fixed positive integer, R be a 2n!-torsion free prime ring and $\mu$, $\nu$ be a pair of generalized derivations on R. If < $\mu^2(x)+\nu(x),\;x^n$ > = 0 for all x $\in$ R, then $\mu$ and $\nu$ are either left multipliers or right multipliers. Let n be a fixed positive integer, R be a noncommutative 2n!-torsion free prime ring with the center $C_R$ and d, g be a pair of derivations on R. If < $d^2(x)+g(x)$, $x^n$ > $\in$ $C_R$ for all x $\in$ R, then d = g = 0. Then we apply these purely algebraic techniques to obtain several range inclusion results of pair of (generalized-)derivations on a Banach algebra.