1 |
D. Mihet, & V. Radu: On the stability of the additive Cauchy functional equation in random normed spaces. J. Math. Anal. Appl. 343 (2008), 567-572.
DOI
|
2 |
C. Park: Set-valued additive ρ-functional inequalities. J. Fixed Point Theory Appl. 20 (2018), no. 2, 20:70.
|
3 |
V. Radu: The fixed point alternative and the stability of functional equations. Fixed Point Theory 4 (2003), 91-96.
|
4 |
Th.M. Rassias: On the stability of the linear mapping in Banach spaces. Proc. Am. Math. Soc. 72 (1978), 297-300.
DOI
|
5 |
L. Cadariu & V. Radu: Fixed point methods for the generalized stability of functional equations in a single variable. Fixed Point Theory Appl. 2008, Art. ID 749392 (2008).
|
6 |
T. Aoki: On the stability of the linear transformation in Banach spaces. J. Math. Soc. Japan 2 (1950), 64-66.
DOI
|
7 |
L. Cadariu, V. Radu, Fixed points and the stability of Jensen's functional equation, J. Inequal. Pure Appl. Math. 4, no. 1, Art. ID 4 (2003).
|
8 |
L. Cadariu & V. Radu: On the stability of the Cauchy functional equation: a fixed point approach. Grazer Math. Ber. 346 (2004), 43-52.
|
9 |
N. Eghbali, J.M. Rassias & M. Taheri: On the stability of a k-cubic functional equation in intuitionistic fuzzy n-normed spaces. Results Math. 70 (2016), 233-248.
DOI
|
10 |
P.W. Cholewa: Remarks on the stability of functional equations. Aequationes Math. 27 (1984), 76-86.
DOI
|
11 |
Iz. EL-Fassi: Solution and approximation of radical quintic functional equation related to quintic mapping in quasi-β-Banach spaces. Rev. R. Acad. Cienc. Exactas F'is. Nat. Ser. A Mat. 113 (2019), no. 2, 675-687.
DOI
|
12 |
D.H. Hyers: On the stability of the linear functional equation. Proc. Nat. Acad. Sci. U.S.A. 27 (1941), 222-224.
DOI
|
13 |
G. Isac & Th.M. Rassias: Stability of ψ-additive mappings: Applications to nonlinear analysis. Int. J. Math. Math. Sci. 19 (1996), 219-228.
DOI
|
14 |
C. Park: Homomorphisms between Poisson JC*-algebras. Bull. Braz. Math. Soc. 36 (2005), 79-97.
DOI
|
15 |
C. Park: Additive ρ-functional inequalities and equations. J. Math. Inequal. 9 (2015), 17-26.
DOI
|
16 |
J. Diaz & B. Margolis: A fixed point theorem of the alternative for contractions on a generalized complete metric space. Bull. Am. Math. Soc. 74 (1968), 305-309.
DOI
|
17 |
C. Park: Fixed point method for set-valued functional equations. J. Fixed Point Theory Appl. 19 (2017), 2297-2308.
DOI
|
18 |
F. Skof: Propriet locali e approssimazione di operatori. Rend. Sem. Mat. Fis. Milano 53 (1983), 113-129.
DOI
|
19 |
L. Sz'ekelyhidi: Superstability of functional equations related to spherical functions, Open Math. 15 (2017), no. 1, 427-432.
DOI
|
20 |
S.M. Ulam: A Collection of the Mathematical Problems. Interscience Publ. New York, 1960.
|
21 |
C. Park: Additive ρ-functional inequalities in non-Archimedean normed spaces. J. Math. Inequal. 9 (2015), 397-407.
DOI
|
22 |
Z. Wang: Stability of two types of cubic fuzzy set-valued functional equations. Results Math. 70 (2016), 1-14.
DOI
|
23 |
P. Gavruta: A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings. J. Math. Anal. Appl. 184 (1994), 431-436.
DOI
|