Browse > Article
http://dx.doi.org/10.7468/jksmeb.2021.28.2.91

LIE BRACKET JORDAN DERIVATIONS IN BANACH JORDAN ALGEBRAS  

Paokanta, Siriluk (Department of Mathematics, Research Institute for Natural Sciences, Hanyang University)
Lee, Jung Rye (Department of Mathematics, Daejin University)
Publication Information
The Pure and Applied Mathematics / v.28, no.2, 2021 , pp. 91-102 More about this Journal
Abstract
In this paper, we introduce Lie bracket Jordan derivations in Banach Jordan algebras. Using the direct method and the fixed point method, we prove the Hyers-Ulam stability of Lie bracket Jordan derivations in complex Banach Jordan algebras.
Keywords
Hyers-Ulam stability; fixed point method; p-functional inequality; Lie bracket Jordan derivation in Banach Jordan algebra; direct method;
Citations & Related Records
연도 인용수 순위
  • Reference
1 D. Mihet, & V. Radu: On the stability of the additive Cauchy functional equation in random normed spaces. J. Math. Anal. Appl. 343 (2008), 567-572.   DOI
2 C. Park: Set-valued additive ρ-functional inequalities. J. Fixed Point Theory Appl. 20 (2018), no. 2, 20:70.
3 V. Radu: The fixed point alternative and the stability of functional equations. Fixed Point Theory 4 (2003), 91-96.
4 Th.M. Rassias: On the stability of the linear mapping in Banach spaces. Proc. Am. Math. Soc. 72 (1978), 297-300.   DOI
5 L. Cadariu & V. Radu: Fixed point methods for the generalized stability of functional equations in a single variable. Fixed Point Theory Appl. 2008, Art. ID 749392 (2008).
6 T. Aoki: On the stability of the linear transformation in Banach spaces. J. Math. Soc. Japan 2 (1950), 64-66.   DOI
7 L. Cadariu, V. Radu, Fixed points and the stability of Jensen's functional equation, J. Inequal. Pure Appl. Math. 4, no. 1, Art. ID 4 (2003).
8 L. Cadariu & V. Radu: On the stability of the Cauchy functional equation: a fixed point approach. Grazer Math. Ber. 346 (2004), 43-52.
9 N. Eghbali, J.M. Rassias & M. Taheri: On the stability of a k-cubic functional equation in intuitionistic fuzzy n-normed spaces. Results Math. 70 (2016), 233-248.   DOI
10 P.W. Cholewa: Remarks on the stability of functional equations. Aequationes Math. 27 (1984), 76-86.   DOI
11 Iz. EL-Fassi: Solution and approximation of radical quintic functional equation related to quintic mapping in quasi-β-Banach spaces. Rev. R. Acad. Cienc. Exactas F'is. Nat. Ser. A Mat. 113 (2019), no. 2, 675-687.   DOI
12 D.H. Hyers: On the stability of the linear functional equation. Proc. Nat. Acad. Sci. U.S.A. 27 (1941), 222-224.   DOI
13 G. Isac & Th.M. Rassias: Stability of ψ-additive mappings: Applications to nonlinear analysis. Int. J. Math. Math. Sci. 19 (1996), 219-228.   DOI
14 C. Park: Homomorphisms between Poisson JC*-algebras. Bull. Braz. Math. Soc. 36 (2005), 79-97.   DOI
15 C. Park: Additive ρ-functional inequalities and equations. J. Math. Inequal. 9 (2015), 17-26.   DOI
16 J. Diaz & B. Margolis: A fixed point theorem of the alternative for contractions on a generalized complete metric space. Bull. Am. Math. Soc. 74 (1968), 305-309.   DOI
17 C. Park: Fixed point method for set-valued functional equations. J. Fixed Point Theory Appl. 19 (2017), 2297-2308.   DOI
18 F. Skof: Propriet locali e approssimazione di operatori. Rend. Sem. Mat. Fis. Milano 53 (1983), 113-129.   DOI
19 L. Sz'ekelyhidi: Superstability of functional equations related to spherical functions, Open Math. 15 (2017), no. 1, 427-432.   DOI
20 S.M. Ulam: A Collection of the Mathematical Problems. Interscience Publ. New York, 1960.
21 C. Park: Additive ρ-functional inequalities in non-Archimedean normed spaces. J. Math. Inequal. 9 (2015), 397-407.   DOI
22 Z. Wang: Stability of two types of cubic fuzzy set-valued functional equations. Results Math. 70 (2016), 1-14.   DOI
23 P. Gavruta: A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings. J. Math. Anal. Appl. 184 (1994), 431-436.   DOI